Citation: | HOU Y J,CHEN Q B,WANG C X,et al.Research trends and future prospects of constructed wetlands at home and abroad based on CiteSpace[J].Journal of Environmental Engineering Technology,2023,13(4):1275-1286 doi: 10.12153/j.issn.1674-991X.20220788 |
Constructed wetlands have the advantages of low capital consumption and good treatment effect, etc., and it has been highly concerned by domestic and foreign scholars. The related research papers have grown significantly, but there is a relative lack of literature analysis in the field of constructed wetlands. The domestic and foreign papers on constructed wetlands in China National Knowledge Infrastructure (CNKI) core journal database and Web of Science (WoS) core collection database from 2000 to 2021 were statistically analyzed by the bibliometric methods using CiteSpace and other software. Based on the comparative analysis of the annual quantity of papers, publication countries, publication authors, research directions and research hotspot evolutions, the research trend differences at home and abroad were revealed. The results showed that from 2000 to 2021, the annual quantity of published papers on constructed wetlands research at home and abroad was on a rapid rise. The quantity of English papers published by Chinese scholars ranked first in the world in WoS core collection database. The main research direction in the field of foreign constructed wetlands also focused on the coupling of microbial fuel cell technology and the removal of emerging pollutants such as personal care products on the basis of traditional research. The main research direction in the field of domestic constructed wetlands revolved around four major categories of decontamination mechanism, decontamination efficiency, decontamination objects and their application. The use of gene sequencing technology to study constructed wetlands from a microscopic perspective, and the constructed wetland-microbial fuel cell coupling technology would be the research hotspots in the field of constructed wetlands in recent years. Constructed wetland technology had entered a mature stage, and was expected to be combined with more emerging fields in the future.
[1] |
卢少勇, 万正芬, 康兴生, 等.《人工湿地水质净化技术指南》编制思路与体系[J]. 环境工程技术学报,2021,11(5):829-836.
LU S Y, WAN Z F, KANG X S, et al. Idea and system of compiling Technical Guidelines for Water Purification by Constructed Wetlands[J]. Journal of Environmental Engineering Technology,2021,11(5):829-836.
|
[2] |
李峰平, 魏红阳, 马喆, 等.人工湿地植物的选择及植物净化污水作用研究进展[J]. 湿地科学,2017,15(6):849-854.
LI F P, WEI H Y, MA Z, et al. Research progress of selection of plants for constructed wetlands and effect of plants' purification on sewage[J]. Wetland Science,2017,15(6):849-854.
|
[3] |
杨永兴.从魁北克2000-世纪湿地大事件活动看21世纪国际湿地科学研究的热点与前沿[J]. 地理科学,2002,22(2):150-155.
YANG Y X. The 21st century hot point and forward position field of international wetland research from Quebec 2000-millennium wetland event[J]. Scientia Geographica Sinica,2002,22(2):150-155.
|
[4] |
MA Y H, ZHENG X Y, FANG Y Q, et al. Autotrophic denitrification in constructed wetlands: achievements and challenges[J]. Bioresource Technology,2020,318:123778. doi: 10.1016/j.biortech.2020.123778
|
[5] |
王世和. 人工湿地污水处理理论与技术[M]. 北京: 科学出版社, 2007.
|
[6] |
祝惠, 阎百兴, 王鑫壹.我国人工湿地的研究与应用进展及未来发展建议[J]. 中国科学基金,2022,36(3):391-397.
ZHU H, YAN B X, WANG X Y. Progress in research and applications of constructed wetlands in China and suggestions for future development[J]. Bulletin of National Natural Science Foundation of China,2022,36(3):391-397.
|
[7] |
成水平, 王月圆, 吴娟.人工湿地研究现状与展望[J]. 湖泊科学,2019,31(6):1489-1498. doi: 10.18307/2019.0625
CHENG S P, WANG Y Y, WU J. Advances and prospect in the studies on constructed wetlands[J]. Journal of Lake Sciences,2019,31(6):1489-1498. doi: 10.18307/2019.0625
|
[8] |
ZHANG H, TANG W Z, WANG W D, et al. A review on China's constructed wetlands in recent three decades: application and practice[J]. Journal of Environmental Sciences,2021,104:53-68. doi: 10.1016/j.jes.2020.11.032
|
[9] |
张德茗, 吴浩.高校和科研机构的R&D对TFP的溢出效应研究[J]. 科学学研究,2016,34(4):548-557.
ZHANG D M, WU H. The spillover effect of universities and research institutions R&D on TFP[J]. Studies in Science of Science,2016,34(4):548-557.
|
[10] |
刘继安, 盛晓光.科教融合的动力机制、治理困境与突破路径: 基于中国科学院大学案例的分析[J]. 中国高教研究,2020(11):26-30.
LIU J A, SHENG X G. Dynamics, predicament and breakthrough of integration of research and education: a case study of the University of Chinese Academy of Sciences[J]. China Higher Education Research,2020(11):26-30.
|
[11] |
夏丽娟, 谢富纪, 王海花.制度邻近、技术邻近与产学协同创新绩效: 基于产学联合专利数据的研究[J]. 科学学研究,2017,35(5):782-791.
XIA L J, XIE F J, WANG H H. The impact of institutional proximity and technological proximity on industry-university collaborative innovation performance: an analysis of joint-patent data[J]. Studies in Science of Science,2017,35(5):782-791.
|
[12] |
俞立平, 沈洁.数量与质量影响力下的学术期刊评价新指标: C刊影响因子和非C刊影响因子[J]. 统计与决策,2022,38(20):26-30.
YU L P, SHEN J. New index of academic journal evaluation under the influence of quantity and quality: impact factors of CSSCI journals and non-CSSCI journals[J]. Statistics & Decision,2022,38(20):26-30.
|
[13] |
金铁成.SCI收录期刊的影响因子与2年自被引率的历年变化与分析: 兼谈加菲尔德期刊自引率论断的时效性[J]. 中国科技期刊研究,2019,30(7):795-800.
JIN T C. Yearly changes and analysis of impact factors and two-year self-cited rates of SCI journals: a discussion on timeliness of journal self-citation thesis of Eugene Garfield[J]. Chinese Journal of Scientific and Technical Periodicals,2019,30(7):795-800.
|
[14] |
林莉莉, 鲁汭, 龙忆年, 等.MFC处理人工湿地生物堵塞物及同步产电研究[J]. 环境科学研究,2020,33(6):1504-1513.
LIN L L, LU R, LONG Y N, et al. MFC treating bio-clogging matter of constructed wetland and synchronous electricity generation[J]. Research of Environmental Sciences,2020,33(6):1504-1513.
|
[15] |
陈金梅, 周巧红, 吴振斌, 等.人工湿地植物的抗寒性研究进展[J]. 水生态学杂志,2021,42(6):117-122.
CHEN J M, ZHOU Q H, WU Z B, et al. Research advances on plant cold resistance in constructed wetlands[J]. Journal of Hydroecology,2021,42(6):117-122.
|
[16] |
孔令为, 贺锋, 夏世斌, 等.钱塘江引水降氮示范工程的构建和运行研究[J]. 环境污染与防治,2014,36(11):60-66.
KONG L W, HE F, XIA S B, et al. Studies on construction and performance of the Qiantang River water diversion de-nitrification demonstration project[J]. Environmental Pollution & Control,2014,36(11):60-66.
|
[17] |
杨廷君, 裴光兰, 李跃平.《民族学刊》2011—2020年高被引论文多维特征计量分析[J]. 民族学刊,2022,13(7):129-136.
YANG T J, PEI G L, LI Y P. Metrological analysis of multi-dimensional characteristics of highly-cited articles published in theJournal of Ethnology over the years 2011-2020[J]. Journal of Ethnology,2022,13(7):129-136.
|
[18] |
VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment,2007,380(1/2/3):48-65.
|
[19] |
STOTTMEISTER U, WIEßNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances,2003,22(1/2):93-117.
|
[20] |
谢文亮, 翟欣, 姚伟欣, 等.编辑出版类Top100高被引论文的分析及启示: 以科技期刊为主题的研究[J]. 中国科技期刊研究,2020,31(12):1515-1527.
XIE W L, ZHAI X, YAO W X, et al. Analysis and enlightenment on Top100 highly cited papers in editing and publishing area with the theme of scientific journals[J]. Chinese Journal of Scientific and Technical Periodicals,2020,31(12):1515-1527.
|
[21] |
杨永兴.国际湿地科学研究的主要特点、进展与展望[J]. 地理科学进展,2002,21(2):111-120.
YANG Y X. Main characteristics, progress and prospect of international wetland science research[J]. Progress in Geography,2002,21(2):111-120.
|
[22] |
夏汉平.人工湿地处理污水的机理与效率[J]. 生态学杂志,2002,21(4):52-59. doi: 10.3321/j.issn:1000-4890.2002.04.012
XIA H P. Mechanisms and efficiencies on wastewater treatment with constructed wetlands: a review[J]. Chinese Journal of Ecology,2002,21(4):52-59. doi: 10.3321/j.issn:1000-4890.2002.04.012
|
[23] |
WU H M, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation[J]. Bioresource Technology,2015,175:594-601. doi: 10.1016/j.biortech.2014.10.068
|
[24] |
王思齐, 张引科.《西安建筑科技大学学报(自然科学版)》高被引论文分析[J]. 西安建筑科技大学学报(自然科学版),2020,52(5):763-770.
WANG S Q, ZHANG Y K. Analysis of the highly cited papers in Journal of Xi'an Univ. of Arch. & Tech. (Natural Science Edition)[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2020,52(5):763-770.
|
[25] |
GAUR N, NARASIMHULU K, Y P. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment[J]. Journal of Cleaner Production,2018,198:1602-1631. doi: 10.1016/j.jclepro.2018.07.076
|
[26] |
DHANGAR K, KUMAR M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: a review[J]. Science of the Total Environment,2020,738:140320. doi: 10.1016/j.scitotenv.2020.140320
|
[27] |
AHMED M B, RAHMAN M S, ALOM J, et al. Microplastic particles in the aquatic environment: a systematic review[J]. Science of the Total Environment,2021,775:145793. doi: 10.1016/j.scitotenv.2021.145793
|
[28] |
GARCÍA J, GARCÍA-GALÁN M J, DAY J W, et al. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: increasing removal with wetlands and reducing environmental impacts[J]. Bioresource Technology,2020,307:123228. doi: 10.1016/j.biortech.2020.123228
|
[29] |
PAN T, ZHU X D, YE Y P. Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: a case study in China[J]. Ecological Engineering,2011,37(2):248-254. doi: 10.1016/j.ecoleng.2010.11.014
|
[30] |
CHEN X, ZHU H, YAN B X, et al. Optimal influent COD/N ratio for obtaining low GHG emissions and high pollutant removal efficiency in constructed wetlands[J]. Journal of Cleaner Production,2020,267:122003. doi: 10.1016/j.jclepro.2020.122003
|
[31] |
GUPTA S, SRIVASTAVA P, PATIL S A, et al. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: potential applications and challenges[J]. Bioresource Technology,2021,320:124376. doi: 10.1016/j.biortech.2020.124376
|
[32] |
唐炳然, 蔡然, 王瑞霖, 等.基于文献分析的我国人工湿地植物配置路线优化[J]. 环境工程技术学报,2022,12(3):905-915.
TANG B R, CAI R, WANG R L, et al. Optimization of hydrophyte configuration route in constructed wetlands in China based on literature analysis[J]. Journal of Environmental Engineering Technology,2022,12(3):905-915.
|
[33] |
肖其亮, 熊丽萍, 彭华, 等.不同基质组合对氮磷吸附能力的研究[J]. 环境科学研究,2022,35(5):1277-1287.
XIAO Q L, XIONG L P, PENG H, et al. Nitrogen and phosphorus adsorption capacity of different substrate combinations[J]. Research of Environmental Sciences,2022,35(5):1277-1287.
|
[34] |
ZHI W, YUAN L, JI G D, et al. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands[J]. Environmental Science & Technology,2015,49(7):4575-4583.
|
[35] |
姚美辰, 段亮, 张恒亮, 等.辽河保护区人工湿地微生物群落结构及分布规律[J]. 环境工程技术学报,2019,9(3):233-238.
YAO M C, DUAN L, ZHANG H L, et al. Microbial community structure and distribution of constructed wetlands in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2019,9(3):233-238.
|
[36] |
黄畯楠, 李青, 张琼华, 等.高负荷复合式人工湿地对污水处理厂尾水低温期的净化效果[J]. 环境工程学报,2021,15(11):3561-3571. doi: 10.12030/j.cjee.202107037
HUANG J N, LI Q, ZHANG Q H, et al. Performance of a high loading hybrid constructed wetland on wastewater treatment plant effluent purification in low temperature period[J]. Chinese Journal of Environmental Engineering,2021,15(11):3561-3571. doi: 10.12030/j.cjee.202107037
|
[37] |
ZHU T D, GAO J Q, HUANG Z Z, et al. Comparison of performance of two large-scale vertical-flow constructed wetlands treating wastewater treatment plant tail-water: contaminants removal and associated microbial community[J]. Journal of Environmental Management,2021,278:111564. doi: 10.1016/j.jenvman.2020.111564
|
[38] |
DONG Y, KAYRANLI B, SCHOLZ M, et al. Nutrient release from integrated constructed wetlands sediment receiving farmyard run-off and domestic wastewater[J]. Water and Environment Journal,2013,27(4):439-452. doi: 10.1111/j.1747-6593.2012.00361.x
|
[39] |
GORITO A M, RIBEIRO A R, ALMEIDA C M R, et al. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation[J]. Environmental Pollution,2017,227:428-443. doi: 10.1016/j.envpol.2017.04.060
|
[40] |
祝志超, 缪恒锋, 崔健, 等.组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究,2018,31(12):2028-2036.
ZHU Z C, MIAO H F, CUI J, et al. Advanced treatment performance of combined constructed wetland system on secondary effluent from wastewater treatment plant[J]. Research of Environmental Sciences,2018,31(12):2028-2036.
|
[41] |
余俊霞. 复合人工湿地强化对低污染水脱氮性能及优化设计研究[D].昆明: 云南大学, 2021.
|
[42] |
陈旭, 张璐.生物炭基质潮汐流人工湿地处理生活污水性能[J]. 生态环境学报,2019,28(7):1443-1449.
CHEN X, ZHANG L. Treatment of domestic wastewater in biochar-packed tidal flow constructed wetland[J]. Ecology and Environmental Sciences,2019,28(7):1443-1449.
|
[43] |
郭鹤方, 甄志磊, 赵林婷, 等.潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学,2021,40(12):3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002
GUO H F, ZHEN Z L, ZHAO L T, et al. Research on the removal effect of tidal flow-subsurface flow constructed wetland on nitrogen in urban polluted water[J]. Environmental Chemistry,2021,40(12):3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002
|
[44] |
李鲁丹, 郭伟杰. 人工湿地技术在我国农村生活污水处理中的应用现状及对策建议[C]//中国环境科学学会2022年科学技术年会:环境工程技术创新与应用分会场论文集(二). 北京: 中国环境科学学会环境工程分会, 2022: 67-70.
|
[45] |
齐冉, 张灵, 杨帆, 等.水力停留时间对潜流湿地净化效果影响及脱氮途径解析[J]. 环境科学,2021,42(9):4296-4303.
QI R, ZHANG L, YANG F, et al. Effect of hydraulic residence time on removal efficiency of pollutants in subsurface flow constructed wetlands and analysis of denitrification mechanism[J]. Environmental Science,2021,42(9):4296-4303.
|
[46] |
马洁晨, 杨郑州, 陈建, 等. 污泥生物炭强化人工湿地处理生活污水性能研究[J/OL]. 生态与农村环境学报. https://doi.org/10.19741/j.issn.1673-4831.2022.0489.
MA J C, YANG Z Z, CHEN J, et al. Enhanced domestic sewage pollutants degradation using sludge biochar in constructed wetlands[J/OL]. Journal of Ecology and Rural Environment. https://doi.org/10.19741/j.issn.1673-4831.2022.0489.
|
[47] |
陈鑫童, 郝庆菊, 熊艳芳, 等.铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学,2022,43(3):1492-1499.
CHEN X T, HAO Q J, XIONG Y F, et al. Effects of hematite and biochar addition on wastewater treatment efficiency, greenhouse gas emission, and microbial community in subsurface flow constructed wetland[J]. Environmental Science,2022,43(3):1492-1499.
|
[48] |
刘然彬, 赵亚乾, 沈澄, 等.人工湿地在“海绵城市”建设中的作用[J]. 中国给水排水,2016,32(24):49-53.
LIU R B, ZHAO Y Q, SHEN C, et al. Application of constructed wetlands to construction of sponge city[J]. China Water & Wastewater,2016,32(24):49-53.
|
[49] |
XIONG R, ZHENG Y, CHEN N W, et al. Predicting dynamic riverine nitrogen export in unmonitored watersheds: leveraging insights of AI from data-rich regions[J]. Environmental Science & Technology,2022,56(14):10530-10542. ◇
|