Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
REN J,MA W F.Prediction of the impact of benzo(a)pyrene on shallow groundwater during natural infiltration of reclaimed water-receiving rivers[J].Journal of Environmental Engineering Technology,2023,13(3):1061-1069 doi: 10.12153/j.issn.1674-991X.20220832
Citation: REN J,MA W F.Prediction of the impact of benzo(a)pyrene on shallow groundwater during natural infiltration of reclaimed water-receiving rivers[J].Journal of Environmental Engineering Technology,2023,13(3):1061-1069 doi: 10.12153/j.issn.1674-991X.20220832

Prediction of the impact of benzo(a)pyrene on shallow groundwater during natural infiltration of reclaimed water-receiving rivers

doi: 10.12153/j.issn.1674-991X.20220832
  • Received Date: 2022-08-22
  • To predict the influence of reclaimed water-receiving rivers on groundwater quality, the spatiotemporal distribution and migration evolution prediction of benzo(a)pyrene [B(a)P] was conducted by investigating and monitoring its levels in the Liangshui River, which received reclaimed water, with Hydrus-1D coupled GMS model. The research results were as follows: The vertical infiltration rate of B(a)P in the vadose zone was 0.102 m−1, which was only 0.73% that of water migration. B(a)P penetrated the 16 m depth vadose zone for 63 years owing to the attenuation function of adsorption and biodegradation, with contribution ratios of 78.4% and 19.3%, respectively. When B(a)P intersected with groundwater, driven by groundwater flow, the migration of B(a)P was mainly in the direction of groundwater flow. The migration rate of B(a)P in groundwater along the direction of groundwater flow was 6.65 m/a, which was 2.42 times and 16.22 times of the diffusion rate in the vertical groundwater flow direction and vertical downward direction, respectively. The spatiotemporal distribution indicated that B(a)P concentration decreased with the crow-fly distance from the river with attenuation rate constants of 1.19×10−4, 3.05×10−4, and 3.67×10−3 m−1 in parallel groundwater flow direction, vertical groundwater flow direction and vertical downward direction, respectively, which were negatively correlated with migration rate. However, B(a)P content increased over the extension of infiltration time with an accumulation rate of 7.3×10−2 d−1. The migration and accumulation of B(a)P induced potential harm to coastal residents taking groundwater as drinking water, which would result in the groundwater safety utilization range decreasing from 438, 276, and 19.8 m to 568, 324, and 27.7 m far from the river in parallel groundwater flow direction, vertical groundwater flow direction and vertical downward direction, respectively, 20 years later.

     

  • loading
  • [1]
    黄俊霖, 郑明霞, 苏婧, 等.奎河河水入渗对河岸带地下水氨氮和硝酸盐氮浓度的影响[J]. 环境科学研究,2020,33(2):421-430. doi: 10.13198/j.issn.1001-6929.2019.03.09

    HUANG J L, ZHENG M X, SU J, et al. Effects of Kuihe River infiltration on the concentration of ammonia nitrogen and nitrate nitrogen in groundwater of riparian zone[J]. Research of Environmental Sciences,2020,33(2):421-430. doi: 10.13198/j.issn.1001-6929.2019.03.09
    [2]
    王树芳, 王丽亚, 王晓红, 等.溶质迁移模型在地下水有机污染源识别中的应用[J]. 环境科学,2012,33(3):760-770. doi: 10.13227/j.hjkx.2012.03.031

    WANG S F, WANG L Y, WANG X H, et al. Solute transport modeling application in groundwater organic contaminant source identification[J]. Environmental Science,2012,33(3):760-770. doi: 10.13227/j.hjkx.2012.03.031
    [3]
    LI J F, DONG H, XU X, et al. Prediction of the bioaccumulation of PAHs in surface sediments of Bohai Sea, China and quantitative assessment of the related toxicity and health risk to humans[J]. Marine Pollution Bulletin,2016,104(1/2):92-100.
    [4]
    HE Y, YANG C, HE W, et al. Nationwide health risk assessment of juvenile exposure to polycyclic aromatic hydrocarbons (PAHs) in the water body of Chinese Lakes[J]. Science of the Total Environment,2020,723:138099. doi: 10.1016/j.scitotenv.2020.138099
    [5]
    HAMID N, SYED J H, JUNAID M, et al. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: implications for changing energy demand[J]. Science of the Total Environment,2018,619/620:165-175. doi: 10.1016/j.scitotenv.2017.11.080
    [6]
    SAMIA K, DHOUHA A, ANIS C, et al. Assessment of organic pollutants (PAH and PCB) in surface water: sediments and shallow groundwater of Grombalia watershed in northeast of Tunisia[J]. Arabian Journal of Geosciences,2018,11(2):1-9.
    [7]
    XIANG Y Y, RENE E R, MA W F. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: performance, microbial community, and functional genes[J]. Journal of Hazardous Materials,2022,423:127015. doi: 10.1016/j.jhazmat.2021.127015
    [8]
    WU C F, ZHU H, LUO Y M, et al. Concentrations and potential health hazards of polycyclic aromatic hydrocarbon in shallow groundwater of a metal smelting area in Southeastern China[J]. Science of the Total Environment,2016,569/570:1561-1569. doi: 10.1016/j.scitotenv.2016.06.250
    [9]
    PAN Z H, LI B H, YANG J, et al. Study on the spatial and temporal distribution and risk assessment of PAHs between river and groundwater: take the typical section of Beijing north canal as an example[J]. Journal of Coastal Research,2020,115(suppl1):361.
    [10]
    BANSAL V, KIM K H. Review of PAH contamination in food products and their health hazards[J]. Environment International,2015,84:26-38. doi: 10.1016/j.envint.2015.06.016
    [11]
    IARC. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[J]. IARC Monogr Eval Carcinog Risks Hum,2010,92:1-853.
    [12]
    朱菲菲, 秦普丰, 张娟, 等.我国地下水环境优先控制有机污染物的筛选[J]. 环境工程技术学报,2013,3(5):443-450. doi: 10.3969/j.issn.1674-991X.2013.05.069

    ZHU F F, QIN P F, ZHANG J, et al. Screening of priority organic pollutants in groundwater of China[J]. Journal of Environmental Engineering Technology,2013,3(5):443-450. doi: 10.3969/j.issn.1674-991X.2013.05.069
    [13]
    卫生部,国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2006.
    [14]
    US EPA. Edition of the drinking water standards and health advisories[S]. Washington DC: National Service Center for Environmental Publications. 2018.
    [15]
    ŠIMŮNEK J, ŠEJNA M, SAITO H, et al. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Version 4.17[M]. California: Department of Environmental Sciences University of California Riverside, 2013: 1-343.
    [16]
    AGHLMAND, ABBASI. Application of MODFLOW with boundary conditions analyses based on limited available observations: a case study of Birjand Plain in east Iran[J]. Water,2019,11(9):1904. doi: 10.3390/w11091904
    [17]
    林挺, 罗飞, 朱艳, 等.Hydrus-1D模型在推导基于保护地下水的土壤风险控制值中的应用[J]. 环境科学,2019,40(12):5640-5648. doi: 10.13227/j.hjkx.201907035

    LIN T, LUO F, ZHU Y, et al. Calculation of the soil risk control value through a Hydrus-1D model for groundwater protection[J]. Environmental Science,2019,40(12):5640-5648. doi: 10.13227/j.hjkx.201907035
    [18]
    王颖, 陈雷, 杨洋, 等.基于TMVOC的地下水位波动带苯系物迁移转化模拟[J]. 环境科学研究,2020,33(3):634-642. doi: 10.13198/j.issn.1001-6929.2019.09.22

    WANG Y, CHEN L, YANG Y, et al. Numerical simulation of BTEX migration in groundwater table fluctuation zone based on TMVOC[J]. Research of Environmental Sciences,2020,33(3):634-642. doi: 10.13198/j.issn.1001-6929.2019.09.22
    [19]
    李翔, 汪洋, 鹿豪杰, 等.京津冀典型区域地下水污染风险评价方法研究[J]. 环境科学研究,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29

    LI X, WANG Y, LU H J, et al. Groundwater pollution risk assessment method in a typical area of Beijing-Tianjin-Hebei region[J]. Research of Environmental Sciences,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
    [20]
    KHAYYUN T. Simulation of groundwater flow and migration of the radioactive cobalt-60 from LAMA nuclear facility-Iraq[J]. Water,2018,10(2):176. doi: 10.3390/w10020176
    [21]
    QIU S W, LIANG X J, XIAO C L, et al. Numerical simulation of groundwater flow in a river valley basin in Jilin urban area, China[J]. Water,2015,7(10):5768-5787. doi: 10.3390/w7105768
    [22]
    WANG Z R, ZHAO X G, XIE T Y, et al. A comprehensive evaluation model of ammonia pollution trends in a groundwater source area along a river in residential areas[J]. Water,2021,13(14):1924. doi: 10.3390/w13141924
    [23]
    LAUTZ L K, SIEGEL D I. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D[J]. Advances in Water Resources,2006,29(11):1618-1633. doi: 10.1016/j.advwatres.2005.12.003
    [24]
    蒙媛. 丰台区地下水模拟研究[D]. 合肥: 合肥工业大学, 2007.
    [25]
    GUSYEV M A, TOEWS M, MORGENSTERN U, et al. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo Catchment, New Zealand[J]. Hydrology and Earth System Sciences,2013,17(3):1217-1227. doi: 10.5194/hess-17-1217-2013
    [26]
    LU X H, JIN M G. One-dimensional unsaturated flow modeling in Luan representative zone of the North China plain[J]. Journal of China University of Geosciences,2007,18:59-61.
    [27]
    SAHU S K, PANDIT G G. Estimation of octanol-water partition coefficients for polycylic aromatic hydrocarbons using reverse-phase HPLC[J]. Journal of Liquid Chromatography & Related Technologies,2003,26(1):135-146.
    [28]
    聂超. 再生水入渗土壤过程中三种典型EDCs的去除特征[D]. 北京: 北京林业大学. 2016.
    [29]
    NOORI R, HOOSHYARIPOR F, JAVADI S, et al. PODMT3DMS-Tool: proper orthogonal decomposition linked to the MT3DMS model for nitrate simulation in aquifers[J]. Hydrogeology Journal,2020,28(3):1125-1142. doi: 10.1007/s10040-020-02114-0
    [30]
    ZHANG H, YANG R X, GUO S S, et al. Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS[J]. Paddy and Water Environment,2020,18(3):481-498. doi: 10.1007/s10333-020-00796-6
    [31]
    DAI F C, GUO Q H. Groundwater response of loess tableland in northwest China under irrigation conditions[J]. Water,2020,12(9):2546. doi: 10.3390/w12092546
    [32]
    HOU X L, WANG S Q, JIN X R, et al. Using an ETWatch (RS)-UZF-MODFLOW coupled model to optimize joint use of transferred water and local water sources in a saline water area of the North China plain[J]. Water,2020,12(12):3361. doi: 10.3390/w12123361
    [33]
    KUSHWAHA R K, PANDIT M K, GOYAL R. MODFLOW based groundwater resource evaluation and prediction in Mendha sub-basin, NE Rajasthan[J]. Journal of the Geological Society of India,2009,74(4):449-458. doi: 10.1007/s12594-009-0154-1
    [34]
    BHUVANESWARAN C, GANESH A. Spatial assessment of groundwater vulnerability using DRASTIC model with GIS in Uppar Odai sub-watershed, Nandiyar, Cauvery Basin, Tamil Nadu[J]. Groundwater for Sustainable Development,2019,9:100270. doi: 10.1016/j.gsd.2019.100270
    [35]
    HASHEMI H. Steady-state unconfined aquifer simulation of the Gareh-bygone plain, Iran[J]. The Open Hydrology Journal,2012,6(1):58-67. doi: 10.2174/1874378101206010058
    [36]
    吕占禄, 张晗, 张金良, 等.沟塘水及其周边浅层地下水中重金属污染特征与健康风险评价[J]. 环境工程技术学报,2020,10(6):971-978. doi: 10.12153/j.issn.1674-991X.20200100

    LÜ Z L, ZHANG H, ZHANG J L, et al. Pollution characteristics and health risk assessment of heavy metals in gully pond water and its surrounding shallow groundwater[J]. Journal of Environmental Engineering Technology,2020,10(6):971-978. doi: 10.12153/j.issn.1674-991X.20200100
    [37]
    李书迪, 谢湉, 张荣海, 等.西南某退役化工厂场地地下水污染特征及污染物迁移规律分析[J]. 环境工程技术学报,2022,12(5):1555-1563. doi: 10.12153/j.issn.1674-991X.20210382

    LI S D, XIE T, ZHANG R H, et al. Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China[J]. Journal of Environmental Engineering Technology,2022,12(5):1555-1563. doi: 10.12153/j.issn.1674-991X.20210382
    [38]
    张坤锋, 昌盛, 赵少延, 等.克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092

    ZHANG K F, CHANG S, ZHAO S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092
    [39]
    张士超, 姚宏, 向鑫鑫, 等.沈抚新城地下水中PAHs的污染特征及健康风险评价[J]. 环境科学,2019,40(1):248-255. doi: 10.13227/j.hjkx.201805253

    ZHANG S C, YAO H, XIANG X X, et al. Pollution characteristic and risk assessment of polycyclic aromatic hydrocarbons in the groundwater of Shen-fu new city in the Hunhe River Basin[J]. Environmental Science,2019,40(1):248-255. ⊗ doi: 10.13227/j.hjkx.201805253
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(290) PDF Downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return