Citation: | HUANG G X,NIE Y X,ZHANG Q H,et al.Research progress of agricultural non-point source pollution migration process and model in basins[J].Journal of Environmental Engineering Technology,2023,13(4):1364-1372 doi: 10.12153/j.issn.1674-991X.20220981 |
Agricultural non-point source pollution is still the main source of water pollution in China. It involves multi-disciplinary intersection of agriculture, water conservancy, environment and ecology, etc., and is one of the key issues of both national and international environmental pollution academic research and watershed pollution control and management. Different disciplines usually use different methods to study the generation and migration of agricultural non-point source pollution at different time and space scales. For example, agriculture focuses on processes such as water irrigation on fields-hillsides-watershed scale, fertilization for different crops at different life stages, nutrient transformation and absorption, soil pool budget, and the effect of microorganisms on nutrients. However, it is often overlooked the internal relationship between different scales or systems, and there are few studies on the integrated simulation of the transportation process. The agricultural non-point source pollution transportation process and its influencing factors from different typical spatial scales (from fields to hillsides, and then to watershed scales), as well as the agricultural non-point source pollution modeling methods in watershed, were summarized. It was proposed that in addition to deeply considering local hydrological processes and the yield, accumulation, release and transportation of pollutants at the typical scales of field and hillside in the model system, the hydrological and pollutant migration processes and the development of an integrated non-point source model, which covered fields-hillsides-watershed system, should be highlighted. Meantime, the existing research problems related to the scale transformation, modeling methods and model uncertainty research of agricultural non-point source pollution migration process were analyzed, and the future research directions were prospected.
[1] |
ZOU L L, LIU Y S, WANG Y S, et al. Assessment and analysis of agricultural non-point source pollution loads in China: 1978-2017[J]. Journal of Environmental Management,2020,263:110400. doi: 10.1016/j.jenvman.2020.110400
|
[2] |
ZHANG W S, LI H P, PUEPPKE S G, et al. Nutrient loss is sensitive to land cover changes and slope gradients of agricultural hillsides: evidence from four contrasting pond systems in a hilly catchment[J]. Agricultural Water Management,2020,237:106165. doi: 10.1016/j.agwat.2020.106165
|
[3] |
US EPA. Identifying and protecting healthy watersheds[R]. Washington DC: US EPA, 2012.
|
[4] |
A blueprint to safeguard Europe's water resources[EB/OL]. [2022-10-10].https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0673.
|
[5] |
生态环境部. 第二次全国污染源普查公报[M]. 北京: 中国统计出版社, 2020.
|
[6] |
杨中文, 张萌, 郝彩莲, 等.基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J]. 环境科学研究,2020,33(11):2493-2506.
YANG Z W, ZHANG M, HAO C L, et al. Source apportionment of total phosphorus pollution in Poyang Lake basin based on source-sink process modeling[J]. Research of Environmental Sciences,2020,33(11):2493-2506.
|
[7] |
薛雪, 毛宇鹏, 张洪. 珠三角典型区域农田小区尺度氮磷和镉砷输移特征与控制对策[J]. 环境工程技术学报, 2023, 13(3): 1179-1186 .
XUE X, MAO Y P, ZHANG H. Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J]. Journal of Environmental Engineering Technology, 2023, 13(3): 1179-1186.
|
[8] |
LI S S, LIU H B, ZHANG L, et al. Potential nutrient removal function of naturally existed ditches and ponds in paddy regions: prospect of enhancing water quality by irrigation and drainage management[J]. Science of the Total Environment,2020,718:137418. doi: 10.1016/j.scitotenv.2020.137418
|
[9] |
SHEN W Z, LI S S, MI M H, et al. What makes ditches and ponds more efficient in nitrogen control[J]. Agriculture, Ecosystems & Environment,2021,314:107409.
|
[10] |
HE Y P, ZHANG J Y, YANG S H, et al. Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization[J]. Agricultural Water Management,2019,221:231-237. doi: 10.1016/j.agwat.2019.03.043
|
[11] |
HUA L L, ZHAI L M, LIU J, et al. Effect of irrigation-drainage unit on phosphorus interception in paddy field system[J]. Journal of Environmental Management,2019,235:319-327.
|
[12] |
LI Y F, WRIGHT A, LIU H Y, et al. Land use pattern, irrigation, and fertilization effects of rice-wheat rotation on water quality of ponds by using self-organizing map in agricultural watersheds[J]. Agriculture, Ecosystems & Environment,2019,272:155-164.
|
[13] |
SHEHAB Z N, JAMIL N R, ARIS A Z, et al. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia[J]. Ecological Indicators,2021,122:107254. doi: 10.1016/j.ecolind.2020.107254
|
[14] |
LI L, GOU M M, WANG N, et al. Landscape configuration mediates hydrology and nonpoint source pollution under climate change and agricultural expansion[J]. Ecological Indicators,2021,129:107959. doi: 10.1016/j.ecolind.2021.107959
|
[15] |
贾晓波, 赵茜, 郝韵, 等.浑太河流域不同水生态功能区环境要素的分布特征及其与土地利用之间的关系[J]. 环境科学研究,2021,34(7):1542-1552.
JIA X B, ZHAO Q, HAO Y, et al. Spatial distribution characteristics of environmental variables and response to land use patterns in different aquatic ecological functional regions of Hun-Tai River Basin[J]. Research of Environmental Sciences,2021,34(7):1542-1552.
|
[16] |
XUE B L, ZHANG H W, WANG G Q, et al. Evaluating the risks of spatial and temporal changes in nonpoint source pollution in a Chinese River Basin[J]. Science of the Total Environment,2022,807:151726. doi: 10.1016/j.scitotenv.2021.151726
|
[17] |
WU J G. Landscape sustainability science (Ⅱ): core questions and key approaches[J]. Landscape Ecology,2021,36(8):2453-2485. doi: 10.1007/s10980-021-01245-3
|
[18] |
MULUALEM T, ADGO E, MESHESHA D T, et al. Exploring the variability of soil nutrient outflows as influenced by land use and management practices in contrasting agro-ecological environments[J]. Science of the Total Environment,2021,786:147450. doi: 10.1016/j.scitotenv.2021.147450
|
[19] |
WU L, LI X P, MA X Y. Particulate nutrient loss from drylands to grasslands/forestlands in a large-scale highly erodible watershed[J]. Ecological Indicators,2019,107:105673. doi: 10.1016/j.ecolind.2019.105673
|
[20] |
WANG T, ZHU B, ZHOU M H, et al. Nutrient loss from slope cropland to water in the riparian zone of the Three Gorges Reservoir: process, pathway, and flux[J]. Agriculture, Ecosystems & Environment,2020,302:107108.
|
[21] |
WU L, YEN H, MA X Y. Effects of particulate fractions on critical slope and critical rainfall intensity for runoff phosphorus from bare loessial soil[J]. CATENA,2021,196:104935. doi: 10.1016/j.catena.2020.104935
|
[22] |
PEI Y W, HUANG L M, LI D F, et al. Characteristics and controls of solute transport under different conditions of soil texture and vegetation type in the water-wind erosion crisscross region of China's Loess Plateau[J]. Chemosphere,2021,273:129651. doi: 10.1016/j.chemosphere.2021.129651
|
[23] |
DU Y N, LI T Y, HE B H. Runoff-related nutrient loss affected by fertilization and cultivation in sloping croplands: an 11-year observation under natural rainfall[J]. Agriculture, Ecosystems & Environment,2021,319:107549.
|
[24] |
OUYANG W, HAO X, WANG L, et al. Watershed diffuse pollution dynamics and response to land development assessment with riverine sediments[J]. Science of the Total Environment,2019,659:283-292. doi: 10.1016/j.scitotenv.2018.12.367
|
[25] |
PINARDI M, SOANA E, SEVERINI E, et al. Agricultural practices regulate the seasonality of groundwater-river nitrogen exchanges[J]. Agricultural Water Management,2022,273:107904. doi: 10.1016/j.agwat.2022.107904
|
[26] |
JIA Z, CHEN C, LUO W, et al. Hydraulic conditions affect pollutant removal efficiency in distributed ditches and ponds in agricultural landscapes[J]. Science of the Total Environment,2019,649:712-721. doi: 10.1016/j.scitotenv.2018.08.340
|
[27] |
WANG S H, WANG Y Q, WANG Y J, et al. Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed[J]. Ecological Indicators,2022,141:109084. doi: 10.1016/j.ecolind.2022.109084
|
[28] |
YI Q T, ZHANG Y, XIE K, et al. Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes[J]. Journal of Hydrology,2020,581:124439. doi: 10.1016/j.jhydrol.2019.124439
|
[29] |
WANG M M, CHEN H S, ZHANG W, et al. Influencing factors on soil nutrients at different scales in a Karst area[J]. CATENA,2019,175:411-420. doi: 10.1016/j.catena.2018.12.040
|
[30] |
何卓识, 霍守亮, 马春子, 等.气候变化对小流域氮、磷通量的影响: 以延安市河流流域为例[J]. 环境工程技术学报,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025
HE Z S, HUO S L, MA C Z, et al. Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in watersheds of Yan'an City[J]. Journal of Environmental Engineering Technology,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025
|
[31] |
陈晨, 徐威杰, 张彦, 等.独流减河流域绿色基础设施空间格局与景观连通性分析的尺度效应[J]. 环境科学研究,2019,32(9):1464-1474.
CHEN C, XU W J, ZHANG Y, et al. Scale effect of the spatial pattern and connectivity analysis for the green infrastructure in Duliujian River Basin[J]. Research of Environmental Sciences,2019,32(9):1464-1474.
|
[32] |
HOLLAWAY M J, BEVEN K J, BENSKIN C M H, et al. The challenges of modelling phosphorus in a headwater catchment: applying a ‘limits of acceptability’ uncertainty framework to a water quality model[J]. Journal of Hydrology,2018,558:607-624. doi: 10.1016/j.jhydrol.2018.01.063
|
[33] |
DALY K, STYLES D, LALOR S, et al. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties[J]. European Journal of Soil Science,2015,66(4):792-801. doi: 10.1111/ejss.12260
|
[34] |
LI Z W, TANG H W, XIAO Y, et al. Factors influencing phosphorus adsorption onto sediment in a dynamic environment[J]. Journal of Hydro-Environment Research,2016,10:1-11. doi: 10.1016/j.jher.2015.06.002
|
[35] |
WALTER M T, GAO B, PARLANGE J Y. Modeling soil solute release into runoff with infiltration[J]. Journal of Hydrology,2007,347(3/4):430-437.
|
[36] |
王全九, 邵明安, 李占斌, 等.黄土区农田溶质径流过程模拟方法分析[J]. 水土保持研究,1999,6(2):67-71. doi: 10.3969/j.issn.1005-3409.1999.02.014
WANG Q J, SHAO M A, LI Z B, et al. Analysis of simulating methods for soil solute transport with runoff in loess plateau[J]. Research of Soil and Water Conservation,1999,6(2):67-71. doi: 10.3969/j.issn.1005-3409.1999.02.014
|
[37] |
YANG T, WANG Q J, WU L S, et al. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment[J]. Science of the Total Environment,2016,557/558:590-600. doi: 10.1016/j.scitotenv.2016.03.087
|
[38] |
SHAO F F, TAO W H, WANG Q J, et al. A modified model for predicting nutrient loss in runoff using a time-varying mixing layer[J]. Journal of Hydrology,2021,603:127091. doi: 10.1016/j.jhydrol.2021.127091
|
[39] |
SHEN Z Y, LIAO Q, HONG Q, et al. An overview of research on agricultural non-point source pollution modelling in China[J]. Separation and Purification Technology,2012,84:104-111. doi: 10.1016/j.seppur.2011.01.018
|
[40] |
JOHNES P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach[J]. Journal of Hydrology,1996,183(3/4):323-349.
|
[41] |
BEASLEY D B, HUGGINS L F, MONKE E J. ANSWERS: a model for watershed planning[J]. Transactions of the ASAE,1980,23(4):938-944. doi: 10.13031/2013.34692
|
[42] |
SWEENEY D W, BOTTCHER A B, CAMPBELL K L, et al. Measured and creams-predicted nitrogen losses from tomato and corn management systems[J]. Journal of the American Water Resources Association,1985,21(5):867-873. doi: 10.1111/j.1752-1688.1985.tb00181.x
|
[43] |
GUPTA A K, RUDRA R P, GHARABAGHI B, et al. CoBAGNPS: a toolbox for simulating water and sediment control basin, WASCoB through AGNPS model[J]. CATENA,2019,179:49-65. doi: 10.1016/j.catena.2019.02.003
|
[44] |
SHI W H, HUANG M B. Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau[J]. International Soil and Water Conservation Research,2021,9(2):291-304. doi: 10.1016/j.iswcr.2020.12.002
|
[45] |
LEE D H, KIM J H, PARK M H, et al. Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model[J]. Ecological Modelling,2020,415:108835. doi: 10.1016/j.ecolmodel.2019.108835
|
[46] |
WANG W Z, CHEN L, SHEN Z Y. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution[J]. Science of the Total Environment,2020,747:141164. doi: 10.1016/j.scitotenv.2020.141164
|
[47] |
荣易, 秦成新, 孙傅, 等.SWAT模型在我国流域水环境模拟应用中的评估验证过程评价[J]. 环境科学研究,2020,33(11):2571-2580.
RONG Y, QIN C X, SUN F, et al. Assessment of evaluation process of SWAT model application in China[J]. Research of Environmental Sciences,2020,33(11):2571-2580.
|
[48] |
MOHAMMED M H, ZWAIN H M, HASSAN W H. Modeling the impacts of climate change and flooding on sanitary sewage system using SWMM simulation: a case study[J]. Results in Engineering,2021,12:100307. doi: 10.1016/j.rineng.2021.100307
|
[49] |
CHI W Q, ZHANG X D, ZHANG W M, et al. Impact of tidally induced residual circulations on chemical oxygen demand (COD) distribution in Laizhou Bay, China[J]. Marine Pollution Bulletin,2020,151:110811. doi: 10.1016/j.marpolbul.2019.110811
|
[50] |
GUZMAN J A, SHIRMOHAMMADI A, SADEGHI A M. Uncertainty considerations in calibration and validation of hydrologic and water quality models[J]. Transactions of the ASABE,2015,58(6):1745-1762. doi: 10.13031/trans.58.10710
|
[51] |
KRUEGER T. Bayesian inference of uncertainty in freshwater quality caused by low-resolution monitoring[J]. Water Research,2017,115:138-148. doi: 10.1016/j.watres.2017.02.061
|
[52] |
FU B, HORSBURGH J S, JAKEMAN A J, et al. Modeling water quality in watersheds: from here to the next generation[J/OL]. Water Resources Research, 2020, 56(11). https://doi.org/10.1029/2020WR027721.
|
[53] |
贺玉彬, 朱畅畅, 陈在妮, 等.大渡河流域径流预报不确定性溯源及降低控制方法[J]. 武汉大学学报(工学版),2021,54(1):65-71.
HE Y B, ZHU C C, CHEN Z N, et al. Runoff forecasting uncertainty traceability analysis and control method research of Dadu River Basin[J]. Engineering Journal of Wuhan University,2021,54(1):65-71.
|
[54] |
孙晓卓, 曾献奎, 吴吉春, 等.一种改进的地下水模型结构不确定性分析方法[J]. 水文地质工程地质,2021,48(6):24-33.
SUN X Z, ZENG X K, WU J C, et al. An improved method of groundwater model structural uncertainty analysis[J]. Hydrogeology & Engineering Geology,2021,48(6):24-33.
|
[55] |
张京, 马金锋, 马梅.流域水文模型不确定性研究进展[J]. 人民黄河,2022,44(7):30-36.
ZHANG J, MA J F, MA M. Research progress on uncertainty of watershed hydrological model[J]. Yellow River,2022,44(7):30-36.
|
[56] |
CHEN L, GONG Y W, SHEN Z Y. Structural uncertainty in watershed phosphorus modeling: toward a stochastic framework[J]. Journal of Hydrology,2016,537:36-44. doi: 10.1016/j.jhydrol.2016.03.039
|
[57] |
FONSECA A, AMES D P, YANG P, et al. Watershed model parameter estimation and uncertainty in data-limited environments[J]. Environmental Modelling & Software,2014,51:84-93.
|
[58] |
KOO H, CHEN M, JAKEMAN A J, et al. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: a holistic analysis applied to SWAT for input datasets and model parameters[J]. Environmental Modelling & Software,2020,127:104676.
|
[59] |
LIU X P, LU M Z, CHAI Y Z, et al. A comprehensive framework for HSPF hydrological parameter sensitivity, optimization and uncertainty evaluation based on SVM surrogate model: a case study in Qinglong River watershed, China[J]. Environmental Modelling & Software,2021,143:105126. ◇
|