Citation: | YANG T,XU R,KOU X M,et al.Effect of magnetic biochar and its aging on the adsorption performance of Cd2+[J].Journal of Environmental Engineering Technology,2023,13(5):1865-1873 doi: 10.12153/j.issn.1674-991X.20221019 |
Magnetic biochar (FBC) is an adsorption material with good adsorption performance and magnetic separation. However, there are few studies on whether the amount of magnetic precursor in the preparation process and the aging effect affect its structure and the ability to adsorb heavy metals. FBC with different iron-carbon ratios (1∶4, 1∶2 and 1∶1, denoted as FBC-4, FBC-2 and FBC-1) were prepared from rice straw and iron salts, and their surface morphology, functional groups and other physical and chemical properties, as well as the adsorption properties of Cd2+ were compared. Two physical aging methods (spontaneous aging and high temperature aging) were used to study the effect of aging on the physicochemical properties and adsorption properties of magnetic biochar. The results showed that compared with ordinary biochar (BC), FBC had a larger specific surface area and pore volume, the number of oxygen-containing functional groups increased, and the characteristic peaks of Fe—O appeared. The saturation magnetization of FBC-4, FBC-2 and FBC-1 increased with the increase of iron content per unit biochar, which were 0.64, 2.21 and 17.69 A·m2/kg, respectively. The adsorption isotherms and kinetic curves of BC and FBC for Cd2+ were consistent with the Langmuir equation and the pseudo-second-order kinetic equation. The relationship between the fitted equilibrium adsorption capacity and the theoretical maximum adsorption capacity was FBC-1>FBC-4>FBC-2>BC, that is, magnetic modification could improve the equilibrium adsorption capacity of Cd2+, and FBC-1 had a stronger adsorption capacity for Cd2+. After two months of spontaneous aging and high temperature aging, the specific surface area of FBC-1 decreased by 45.8% and 36.4%, the average pore size increased by 72.7% and 43.2%, and the saturation magnetization increased to 33.53 and 26.65 A·m2/kg, respectively. Aging could inhibit the adsorption capacity of magnetic biochar for Cd2+. The equilibrium adsorption capacity decreased from 36.97 mg/g before aging to 30.97 mg/g (spontaneous aging) and 28.22 mg/g (high temperature aging), and the theoretical maximum adsorption capacity decreased from 63.80 mg/g to 46.68 mg/g and 40.29 mg/g, respectively. Compared with spontaneous aging, high temperature aging had a more obvious inhibitory effect on the adsorption performance of magnetic biochar for Cd2+.
[1] |
FAN Z X, ZHANG Q, LI M, et al. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method[J]. Environmental Science and Pollution Research,2018,25(9):8330-8339. doi: 10.1007/s11356-017-1145-1
|
[2] |
YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment,2018,642:690-700. doi: 10.1016/j.scitotenv.2018.06.068
|
[3] |
陈能场, 郑煜基, 何晓峰, 等.《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报,2017,36(9):1689-1692. doi: 10.11654/jaes.2017-1220
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the National General Survey of Soil Contamination[J]. Journal of Agro-Environment Science,2017,36(9):1689-1692. doi: 10.11654/jaes.2017-1220
|
[4] |
李晓锋, 丁豪杰, 苏奇倩, 等.降低烟草吸收土壤镉的钝化技术及其机理研究进展[J]. 环境工程技术学报,2022,12(3):893-904. doi: 10.12153/j.issn.1674-991X.20210227
LI X F, DING H J, SU Q Q, et al. Research progress on passivation technologies and their mechanism of reducing soil cadmium uptake by tobacco[J]. Journal of Environmental Engineering Technology,2022,12(3):893-904. doi: 10.12153/j.issn.1674-991X.20210227
|
[5] |
武超, 周顺江, 王华利, 等.生物炭和锌对土壤镉赋存形态及小麦镉积累的影响[J]. 环境科学研究,2022,35(1):202-210.
WU C, ZHOU S J, WANG H L, et al. Effects of biochar and zinc on soil cadmium fractions and wheat accumulation[J]. Research of Environmental Sciences,2022,35(1):202-210.
|
[6] |
陈斐杰, 夏会娟, 刘福德, 等.生物质炭特性及其对土壤性质的影响与作用机制[J]. 环境工程技术学报,2022,12(1):161-172. doi: 10.12153/j.issn.1674-991X.20210067
CHEN F J, XIA H J, LIU F D, et al. Characteristics of biochar and its effects and mechanism on soil properties[J]. Journal of Environmental Engineering Technology,2022,12(1):161-172. doi: 10.12153/j.issn.1674-991X.20210067
|
[7] |
FOONG S Y, CHAN Y H, CHIN B L F, et al. Production of biochar from rice straw and its application for wastewater remediation: an overview[J]. Bioresource Technology,2022,360:127588. doi: 10.1016/j.biortech.2022.127588
|
[8] |
崔志文, 任艳芳, 王伟, 等.碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制[J]. 环境科学,2020,41(7):3315-3325. doi: 10.13227/j.hjkx.201912025
CUI Z W, REN Y F, WANG W, et al. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar[J]. Environmental Science,2020,41(7):3315-3325. doi: 10.13227/j.hjkx.201912025
|
[9] |
罗海艳, 李丹阳, 刘寿涛, 等.铁锰改性椰壳炭对土壤镉形态及水稻吸收积累镉的影响[J]. 环境科学研究,2019,32(5):857-865. doi: 10.13198/j.issn.1001-6929.2018.10.11
LUO H Y, LI D Y, LIU S T, et al. Effects of Fe-Mn modified coconut shell biochar on cadmium speciation and accumulation in rice[J]. Research of Environmental Sciences,2019,32(5):857-865. doi: 10.13198/j.issn.1001-6929.2018.10.11
|
[10] |
HASSAN M, NAIDU R, DU J H, et al. Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment[J]. Science of the Total Environment,2020,702:134893. doi: 10.1016/j.scitotenv.2019.134893
|
[11] |
李华夏, 林毅, 周小斌, 等.生物炭负载纳米零价铁去除废水中重金属的研究进展[J]. 环境工程技术学报,2022,12(3):787-793. doi: 10.12153/j.issn.1674-991X.20210242
LI H X, LIN Y, ZHOU X B, et al. Research progress on heavy metals removal from wastewater by biochar-supported nano zero-valent iron[J]. Journal of Environmental Engineering Technology,2022,12(3):787-793. doi: 10.12153/j.issn.1674-991X.20210242
|
[12] |
LIU L, YUAN M, WANG X R, et al. Biochar aging: properties, mechanisms, and environmental benefits for adsorption of metolachlor in soil[J]. Environmental Technology & Innovation,2021,24:101841.
|
[13] |
胡昕怡, 徐伟健, 施珂珂, 等.土壤/沉积物中黑碳的老化模拟研究进展[J]. 环境工程技术学报,2020,10(5):860-870. doi: 10.12153/j.issn.1674-991X.20190221
HU X Y, XU W J, SHI K K, et al. Research progress of aging simulation of black carbons (BCs) in soils/sediments[J]. Journal of Environmental Engineering Technology,2020,10(5):860-870. doi: 10.12153/j.issn.1674-991X.20190221
|
[14] |
WANG L W, O’CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology,2020,54(23):14797-14814.
|
[15] |
HUANG X Y, LYU P, LI L F, et al. Effect of three aging processes on physicochemical and As(Ⅴ) adsorption properties of Ce/Mn-modified biochar[J]. Environmental Research,2022,214:113839. doi: 10.1016/j.envres.2022.113839
|
[16] |
XING D, CHENG H G, NING Z P, et al. Field aging declines the regulatory effects of biochar on cadmium uptake by pepper in the soil[J]. Journal of Environmental Management,2022,321:115832. doi: 10.1016/j.jenvman.2022.115832
|
[17] |
HAN Z T, SANI B, MROZIK W, et al. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars[J]. Water Research,2015,70:394-403. doi: 10.1016/j.watres.2014.12.016
|
[18] |
陈昱. 生物炭对重金属的长期稳定性研究[D]. 苏州: 苏州科技大学, 2016.
|
[19] |
LIANG H G, ZHU C X, JI S, et al. Magnetic Fe2O3/biochar composite prepared in a molten salt medium for antibiotic removal in water[J]. Biochar,2022,4(1):1-13. doi: 10.1007/s42773-021-00127-w
|
[20] |
吴文卫, 周丹丹.生物炭老化及其对重金属吸附的影响机制[J]. 农业环境科学学报,2019,38(1):7-13. doi: 10.11654/jaes.2018-0411
WU W W, ZHOU D D. Influence of biochar aging on its physicochemical properties and adsorption of heavy metals[J]. Journal of Agro-Environment Science,2019,38(1):7-13. doi: 10.11654/jaes.2018-0411
|
[21] |
花昀. 改良水热炭对镉的吸附及水稻土壤镉生物有效的影响 [D]. 南京: 南京农业大学, 2020.
|
[22] |
CHEN B L, CHEN Z M, LÜ S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology,2011,102(2):716-723. doi: 10.1016/j.biortech.2010.08.067
|
[23] |
MORADI N, KARIMI A. Fe-modified common reed biochar reduced cadmium (Cd) mobility and enhanced microbial activity in a contaminated calcareous soil[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):329-340. doi: 10.1007/s42729-020-00363-2
|
[24] |
GUPTA V K, NAYAK A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles[J]. Chemical Engineering Journal,2012,180:81-90. doi: 10.1016/j.cej.2011.11.006
|
[25] |
GONG H F, HUANG J J, DING Z, et al. A potential method using magnetically modified wheat straw biochars for soil Cd extraction[J]. Ecological Engineering,2021,166:106240. doi: 10.1016/j.ecoleng.2021.106240
|
[26] |
朱健, 王平, 雷明婧, 等.硅藻土的复合改性及其对水溶液中Cd2+的吸附特性[J]. 环境科学学报,2016,36(6):2059-2066.
ZHU J, WANG P, LEI M J, et al. Composite modification of diatomite and its adsorption characteristic of Cd2+ in aqueous solutions[J]. Acta Scientiae Circumstantiae,2016,36(6):2059-2066.
|
[27] |
CHIA C H, GONG B, JOSEPH S D, et al. Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX[J]. Vibrational Spectroscopy,2012,62:248-257. doi: 10.1016/j.vibspec.2012.06.006
|
[28] |
魏园园. 软磁铁素体不锈钢的成分设计及性能研究[D]. 南京: 南京理工大学, 2017.
|
[29] |
王书光. 深冷处理对铁镍基非晶合金软磁性能的影响[D]. 太原: 太原科技大学, 2016.
|
[30] |
吴萍. Zn在生物炭上的吸附固定分子机制及其环境效应[D]. 北京: 中国科学院大学, 2019.
|
[31] |
卞园. 老化作用对生物炭吸附钝化矿区土壤中镉的影响[D]. 包头: 内蒙古科技大学, 2021.
|
[32] |
TRAKAL L, VESELSKÁ V, ŠAFAŘÍK I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology,2016,203:318-324. doi: 10.1016/j.biortech.2015.12.056
|
[33] |
SIZMUR T, FRESNO T, AKGÜL G, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology,2017,246:34-47. doi: 10.1016/j.biortech.2017.07.082
|
[34] |
LIANG S, SHI S Q, ZHANG H H, et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass: formation mechanism and efficient adsorption of Cr(Ⅵ) in an aqueous solution[J]. Science of the Total Environment,2019,695:133886. doi: 10.1016/j.scitotenv.2019.133886
|
[35] |
姜晶, 邓精灵, 盛光遥.生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报,2022,31(10):2089-2100.
JIANG J, DENG J L, SHENG G Y. A review of biochar aging and its impact on the adsorption of heavy metals[J]. Ecology and Environmental Sciences,2022,31(10):2089-2100.
|
[36] |
XU Z B, XU X Y, TSANG D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution,2018,242:1362-1370. ⊗ doi: 10.1016/j.envpol.2018.08.012
|