Citation: | LI H Y,PAN Y,ZHANG L F,et al.Apparent pollution evaluation and source analysis of river water bodies in the tidal river network area of the plains[J].Journal of Environmental Engineering Technology,2023,13(5):1839-1848 doi: 10.12153/j.issn.1674-991X.20221119 |
Taking the river course in Dali Town, Foshan City as the research object, the sensation pollution index (SPI) and the classification method of apparent pollution types were utilized to evaluate the apparent pollution status and pollution sources of the river course water in the plain tidal river network area from two perspectives of pollution degree and pollution type, and Positive Matrix Factorization model was used to quantitatively analyze the pollution sources. The results showed that the landscape river in Dali Town, Foshan City had poor overall apparent quality. The apparent pollution type was mainly mixed-dominant and the level of pollution was found to be heavier in summer and late spring compared to early spring. The apparent conditions of different areas were in the order of Zhen Shuiwei Area>Baisha Area>Yan Lianwei Area>Huangi Yanlianwei Area>Xiebian Chong and Xiangjihe Area>Michong Area>Houhai Area. Overall, the apparent quality of the river channel was poor during low tide periods, and the varying tides greatly impacted the perceived apparent quality of the river in the southern region of the town. The types and contribution rates of pollution sources in river channels varied depending on the level and type of pollution. For organic-dominated (black and odorous) water, the primary source of pollution was point sources, accounting for 52.61% of the pollution. Meanwhile, for organic-dominated waters with blooms, agricultural non-point sources contributed the most pollution at 35.98%. In cases of nutrition-led pollution, the primary source was found to be plantation pollution, contributing to 51.43% of the total pollution. Finally, for inorganic-dominated pollution, surface runoff was the main source, accounting for 41.50% of the pollution. In conclusion, it was noteworthy that there existed significant temporal and spatial changes in the apparent pollution levels of the rivers in Dali Town. Furthermore, the pollution sources causing various types of apparent pollution differed, indicating a need to classify and treat them accordingly to enhance overall conditions.
[1] |
许益新, 李一平, 罗育池, 等.引水改善平原感潮河网水质效果评估[J]. 水资源保护,2019,35(6):124-130. doi: 10.3880/j.issn.1004-6933.2019.06.019
XU Y X, LI Y P, LUO Y C, et al. Effect evaluation of water diversion to water quality improve in plain tidal river network[J]. Water Resources Protection,2019,35(6):124-130. doi: 10.3880/j.issn.1004-6933.2019.06.019
|
[2] |
崔树彬, 汪义杰, 张云, 等. 珠江三角洲感潮内河水体污染环境特征与修复技术研究[C]//第四届粤港澳可持续发展研讨会论文集. 广州: 广东省科学技术协会科技交流部, 2008: 60-66.
|
[3] |
丁小鹏. 感潮河西南涌的水质分析与污染源控制研究[D]. 广州: 广东工业大学, 2015.
|
[4] |
翁巧然, 吕旭波, 孙明东, 等.基于控制单元划分的大辽河流域污染物空间分布及来源解析[J]. 环境工程技术学报,2023,13(1):171-179.
WENG Q R, LÜ X B, SUN M D, et al. Spatial distribution and source analysis of pollutants in Daliao River basin based on control unit division[J]. Journal of Environmental Engineering Technology,2023,13(1):171-179.
|
[5] |
张妍妍, 王峥, 邱斌, 等.长江流域湖北片区典型城市水生态环境问题解析及整治对策[J]. 环境工程技术学报,2023,13(1):27-35.
ZHANG Y Y, WANG Z, QIU B, et al. Characteristics and countermeasures for urban water eco-environment problems in the typical cities in Hubei Area of Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2023,13(1):27-35.
|
[6] |
王子为, 钱昶, 张成波, 等.伊逊河流域总磷污染来源解析[J]. 环境科学研究,2020,33(10):2290-2297. doi: 10.13198/j.issn.1001-6929.2020.05.12
WANG Z W, QIAN C, ZHANG C B, et al. Source apportionment of total phosphorus pollution in Yixun River Basin[J]. Research of Environmental Sciences,2020,33(10):2290-2297. doi: 10.13198/j.issn.1001-6929.2020.05.12
|
[7] |
黄国兰, 萧航, 陈春江, 等.化学质量平衡法在水体污染物源解析中的应用[J]. 环境科学,1999(6):14-17.
HUANG G L, XIAO H, CHEN C J, et al. Source apportionment of water pollutants by Chemical-Mass-Balance Method[J]. Environmental Science,1999(6):14-17.
|
[8] |
陈凯, 刘启蒙, 刘瑜, 等.钱营孜煤矿深部地下水水化学特征及来源解析[J]. 煤田地质与勘探,2022,50(8):99-106. doi: 10.12363/issn.1001-1986.21.11.0631
CEHN K, LIU Q M, LIU Y, et al. Hydrochemical characteristics and source analysis of deep groundwater in Qianyingzi Coal Mine[J]. Coal Geology & Exploration,2022,50(8):99-106. doi: 10.12363/issn.1001-1986.21.11.0631
|
[9] |
SUBBA R N, DINAKAR A, SUN L, et al. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover: a case study[J]. Journal of Contaminant Hydrology,2022,248:103990-103990. doi: 10.1016/j.jconhyd.2022.103990
|
[10] |
后希康, 张凯, 段平洲, 等.基于APCS-MLR模型的沱河流域污染来源解析[J]. 环境科学研究,2021,34(10):2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30
HOU X K, ZHANG K, DUAN P Z, et al. Pollution source apportionment of Tuohe River based on absolute principal component score: multiple linear regression[J]. Research of Environmental Sciences,2021,34(10):2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30
|
[11] |
张冬萍, 刘蓬, 刘琳, 等.黄石市磁湖水质时空分布及污染源解析[J]. 环境工程技术学报,2022,12(2):560-566. doi: 10.12153/j.issn.1674-991X.20210679
ZHANG D P, LIU X, LIU L, et al. Temporal and spatial distribution of water quality and source apportionment in Cihu Lake, Huangshi City[J]. Journal of Environmental Engineering Technology,2022,12(2):560-566. doi: 10.12153/j.issn.1674-991X.20210679
|
[12] |
吴喜军, 董颖, 赵健, 等. 陕北矿区典型河流多环芳烃的赋存特征、来源及毒性风险分析[J]. 环境科学, 2023,44(4):2040-2051.
WU X J, DONG Y, ZHAO J, et al. Occurrence characteristics, sources, and toxicity risk analysis of polycyclic aromatic hydrocarbons in typical rivers of northern Shaanxi mining area, China[J]. Environmental Science, 2023,44(4):2040-2051.
|
[13] |
NIU C, ZHANG Q Q, XIAO L L, et al. Spatiotemporal variation in groundwater quality and source apportionment along the Ye River of North China using the PMF model[J]. International Journal of Environmental Research and Public Health,2022,19(3):1779-1779. doi: 10.3390/ijerph19031779
|
[14] |
马杰, 沈智杰, 张萍萍, 等. 基于APCS-MLR和PMF模型的煤矸山周边耕地土壤重金属污染特征及源解析[J]. 环境科学, 2023,44(4):2192-2203.
MA J, SHEN Z J, ZHANG P P, et al. Pollution characteristics and source apportionment of heavy metals in farmland soils around the Gangue Heap of Coal Mine based on APCS-MLR and PMF receptor model[J]. Environmental Science, 2023, 44(4): 2192-2203.
|
[15] |
涂茜, 黄浩, 陆谢娟, 等.基于PMF模型的城市黑臭水体污染源解析: 以武汉市湖溪河为例[J]. 环境保护科学,2019,45(6):59-63.
TU X, HUANG H, LU X J, et al. Analysis of pollution sources of urban black-odor water based on PMF model: a case study of the Huxi River in Wuhan[J]. Environmental Protection Science,2019,45(6):59-63.
|
[16] |
REN C B, ZHANG Q Q, WANG H W, et al. Characteristics and source apportionment of polycyclic aromatic hydrocarbons of groundwater in Hutuo River alluvial-pluvial fan, China, based on PMF model[J]. Environmental Science and Pollution Research,2021,28(8):9647-9656. doi: 10.1007/s11356-020-11485-6
|
[17] |
SARA C, STEFANO V, GIOVANNI L, et al. Characterization of the Danube River sediments using the PMF multivariate approach[J]. Chemosphere,2014,95(9):329-335.
|
[18] |
魏攀龙, 潘杨, 戴天杰, 等.采用水体表观污染指数法评价苏州城市水体表观质量[J]. 环境工程,2019,37(4):12-16.
WEI P L, PAN Y, DAI T J, et al. Application of sensation pollution index method to evaluate the apparent quality of water body in Suzhou[J]. Environmental Engineering,2019,37(4):12-16.
|
[19] |
司壮壮. 表观污染城市水体中悬浮物有机特性及来源研究[D]. 苏州: 苏州科技大学, 2021.
|
[20] |
戴天杰, 魏攀龙, 潘杨, 等.苏州市景观水体表观污染类型识别及特征指标筛选[J]. 水资源保护,2021,37(2):141-147.
DAI T J, WEI P L, PAN Y, et al. Identification of apparent pollution types and screening of characteristic indexes of landscape water body in Suzhou[J]. Water Resources Protection,2021,37(2):141-147.
|
[21] |
PAATERO P, TANPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5(2):111-126. doi: 10.1002/env.3170050203
|
[22] |
吴青梅, 罗慧东, 孙国萍, 等.典型感潮内河涌水质污染特征调查研究[J]. 环境科学学报,2011,31(10):2210-2216.
WU Q M, LUO H D, SUN G P, et al. Investigation on polluted water quality of the typical tidal urban river[J]. Acta Scientiae Circumstantiae,2011,31(10):2210-2216.
|
[23] |
魏攀龙. 城市水体表观污染分类及其关键影响因素研究[D]. 苏州: 苏州科技大学, 2019.
|
[24] |
俞茜. 普渡河污染源解析及浮游藻类变化特征[D]. 北京: 清华大学, 2015.
|
[25] |
宣雍祺, 张俊, 叶智峰, 等.广州市南沙新区流域污染分布特征及控制策略[J]. 安徽农业科学,2018,46(15):67-71. doi: 10.3969/j.issn.0517-6611.2018.15.021
XUAN Y Q, ZHANG J, YE Z F, et al. Pollution distribution characteristics and control strategies in Nansha New District of Guangzhou City[J]. Journal Of Anhui Agricultural Sciences,2018,46(15):67-71. doi: 10.3969/j.issn.0517-6611.2018.15.021
|
[26] |
SINGH H, SINGH D, SINGH S K, et al Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India[J]. International Journal of River Basin Management, 2017, 15(3): 347-360.
|
[27] |
BAO T L, WANG P F, HU B, et al. Investigation on the effects of sediment resuspension on the binding of colloidal organic matter to copper using fluorescence techniques[J]. Chemosphere,2019,236(C):124312.
|
[28] |
ZHU W Z, YANG G P, ZHANG H H. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters[J]. Science of the Total Environment,2017,607/608(6):214-224.
|
[29] |
王桢桢, 潘杨, 翟笑伟.封闭景观水体的表观污染机制研究[J]. 水污染防治,2015,33(4):9-13.
WANG Z Z, PAN Y, ZHAI X W. Apparent pollution mechanism in the closed landscape water[J]. Water Pollution Control,2015,33(4):9-13.
|
[30] |
李尧, 刘建卫, 秦国帅, 等.浑太流域水质演变特征及污染源解析[J]. 中国农村水利水电,2021,466(8):14-17. doi: 10.3969/j.issn.1007-2284.2021.08.003
LI Y, LIU J W, QIN G S, et al. Water quality evolution characteristics and pollution source analysis in Huntai River Basin[J]. China Rural Water and Hydropower,2021,466(8):14-17. doi: 10.3969/j.issn.1007-2284.2021.08.003
|
[31] |
徐燕, 唐周.基于水质分布特征和受体模型的河流水污染源解析研究[J]. 当代化工研究,2022,114(13):55-57.
XU Y, TANG Z. Traceability analysis of river water pollution based on water quality distribution characteristics and receptor model[J]. Modern Chemical Research,2022,114(13):55-57.
|
[32] |
孙小淇. 武进区地表水水质分布特征及其氮污染来源解析研究[D]. 上海: 华东理工大学, 2020.
|
[33] |
章建宁, 蔡继军, 张浩.常州市地表水中氨氮输移分析及对策建议[J]. 环境监控与预警,2010,2(6):36-38. doi: 10.3969/j.issn.1674-6732.2010.06.011
ZHANG J N, CAI J J, ZHANG H. The analysis and countermeasures of ammonia in nitrogen transportation in surface water of Changzhou[J]. Environmental Monitoring and Forewarning,2010,2(6):36-38. doi: 10.3969/j.issn.1674-6732.2010.06.011
|
[34] |
张占平.水体中氨氮污染来源及其控制: 富营养化的思考[J]. 内蒙古环境科学,2008,20(5):71-72.
ZHANG Z P. The sources of ammonia and nitrogen pollution in water and their controls: thinking of eutrophication[J]. Environmental Science of Inner Mongolia,2008,20(5):71-72.
|
[35] |
程元辉, 毛宇鹏, 张洪.珠江三角洲地区人为氮磷净输入特征及污染管控建议[J]. 环境工程学报,2022,16(6):2049-2060.
CHENG Y H, MAO Y P, ZHANG H. Characteristics of anthropogenic net input of nitrogen and phosphorus and suggestions on pollution control in Pearl River Delta[J]. Chinese Journal of Environmental Engineering,2022,16(6):2049-2060. ⊕
|