Citation: | WU X Y,QIN M L,JIANG H B,et al.Simulation of land use zoning optimization under multi-objective scenarios based on maximizing carbon storage: taking Qingshui River of Xijiang River in Guangxi as an example[J].Journal of Environmental Engineering Technology,2023,13(5):1752-1762 doi: 10.12153/j.issn.1674-991X.20221203 |
Land use change is an important factor affecting carbon sequestration change, and land use optimization plays an important role in realizing regional carbon balance. Based on the data of land use in 2000, 2010 and 2020, the temporal and spatial development characteristics of land use change and carbon storage in Qingshui River basin in 2060 were predicted by FLUS-InVEST coupling model under different simulation scenarios (baseline scenario, cultivated land protection scenario, water area protection scenario, and high-carbon storage land protection scenario). Aiming at the suitable development direction of high, medium and low carbon storage capacity grade regions, a grey linear programming model based on the maximization of carbon storage was constructed to optimize the quantitative structure of land use and simulate the spatial layout of land use using FLUS model. Fragstats software was used to analyze the morphological pattern of different land use types in the upper, middle and lower reaches of the basin, and analyze their correlation with carbon storage, and corresponding optimization strategies. The results showed that: 1) Under the four simulation scenarios, the carbon storage in the basin would increase steadily in 2060 only under the high-carbon storage land protection scenario, and decrease significantly under the other three scenarios. 2) Based on the optimization scheme, in 2060, the area of forest land, wetland and water area in the basin would increase, the area of construction land would increase steadily, the area of grassland and cultivated land would decrease relatively and the contiguous cultivated land would remain unchanged, and the overall regional carbon storage would increase by 1.32×106 t. 3) The land use pattern of the basin affected the carbon storage, and there was spatial heterogeneity in different segments. On the whole, the patches showed complex and irregular shapes with high degree of aggregation and connectivity, which was conducive to improve the overall carbon storage in the region. Therefore, the optimization proposed in this thesis can better meet the development needs of different regions of the basin while coordinate the overall development at the same time, and eventually increase the carbon storage of the basin and promote the overall benefit optimization.
[1] |
BERGER A R, HODGE R A. Natural change in the environment: a challenge to the pressure-state-response concept[J]. Social Indicators Research,1998,44(2):255-265. doi: 10.1023/A:1006888532080
|
[2] |
张燕, 师学义, 唐倩.不同土地利用情景下汾河上游地区碳储量评估[J]. 生态学报,2021,41(1):360-373.
ZHANG Y, SHI X Y, TANG Q. Carbon storage assessment in the upper reaches of the Fenhe River under different land use scenarios[J]. Acta Ecologica Sinica,2021,41(1):360-373.
|
[3] |
KAIRO J, MBATHA A, MURITHI M M, et al. Total ecosystem carbon stocks of mangroves in Lamu, Kenya; and their potential contributions to the climate change agenda in the country[J]. Frontiers in Forests and Global Change,2021,4:709227. doi: 10.3389/ffgc.2021.709227
|
[4] |
薛峰, 李苗裔, 马妍, 等.基于FLUS模型的江西省国土空间开发模拟与评估[J]. 规划师,2020,36(8):12-19.
XUE F, LI M Y, MA Y, et al. Simulation and evaluation of national land use and spatial development based on FLUS model: Jiangxi Province[J]. Planners,2020,36(8):12-19.
|
[5] |
HUO J G, SHI Z Q, ZHU W B, et al. A multi-scenario simulation and optimization of land use with a markov-FLUS coupling model: a case study in Xiong'an New Area, China[J]. Sustainability,2022,14(4):2425. doi: 10.3390/su14042425
|
[6] |
HOUGHTON R A, NASSIKAS A A. Global and regional fluxes of carbon from land use and land cover change 1850-2015[J]. Global Biogeochemical Cycles,2017,31(3):456-472. doi: 10.1002/2016GB005546
|
[7] |
卢雅焱, 徐晓亮, 李基才, 等.基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究,2022,39(6):1896-1906.
LU Y Y, XU X L, LI J C, et al. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model[J]. Arid Zone Research,2022,39(6):1896-1906.
|
[8] |
LI Y X, LIU Z S, LI S J, et al. Multi-scenario simulation analysis of land use and carbon storage changes in Changchun City based on FLUS and InVEST model[J]. Land,2022,11(5):647. doi: 10.3390/land11050647
|
[9] |
朱志强, 马晓双, 胡洪.基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报,2021,41(2):222-229.
ZHU Z Q, MA X S, HU H. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou City by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation,2021,41(2):222-229.
|
[10] |
庄子薛, 谢梦晴, 张文萍, 等.基于FLUS-InVEST模型的碳储量时空变迁及多情景模拟预测: 以成德眉资地区为例[J]. 风景园林,2022,29(5):38-44.
ZHUANG Z X, XIE M Q, ZHANG W P, et al. Temporal and spatial changes and multi-scenario simulation prediction of carbon storage based on FLUS-InVEST model: a case study of Chengdu-Deyang-Meishan-Ziyang area[J]. Landscape Architecture,2022,29(5):38-44.
|
[11] |
张凯琪, 陈建军, 侯建坤, 等.耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究[J]. 中国环境科学,2022,42(6):2799-2809.
ZHANG K Q, CHEN J J, HOU J K, et al. Study on sustainable development of carbon storage in Guilin coupled with InVEST and GeoSOS-FLUS model[J]. China Environmental Science,2022,42(6):2799-2809.
|
[12] |
魏玺, 邵亚, 蔡湘文, 等.漓江流域陆地生态系统碳储量时空特征与预测[J]. 环境工程技术学报,2023,13(3):1223-1233.
WEI X, SHAO Y, CAI X W, et al. Spatio-temporal characteristics and prediction of carbon storage in terrestrial ecosystems in Lijiang River Basin[J]. Journal of Environmental Engineering Technology,2023,13(3):1223-1233.
|
[13] |
赵一行, 高润艺, 李海东, 等.江阴市土地利用对碳储量的影响及优化研究[J]. 生态与农村环境学报,2022,38(10):1290-1298.
ZHAO Y X, GAO R Y, LI H D, et al. Study on carbon storage change and optimization of land use in Jiangyin City[J]. Journal of Ecology and Rural Environment,2022,38(10):1290-1298.
|
[14] |
SHEIKH V, SALMANI H, MAHINY A S, et al. Land use optimization through bridging multiobjective optimization and multicriteria decision-making models (case study: Tilabad Watershed, Golestan Province, Iran)[J]. Natural Resource Modeling,2021,34(2):e12301.
|
[15] |
陈宁, 辛存林, 唐道斌, 等. 中国西北地区多情景土地利用优化与碳储量评估[J]. 环境科学, 2023, 44(8): 4655-4665.
CHEN N, XIN C L, TANG D B, et al. Multi-scenario land use optimization and carbon storage assessment in Northwest China[J]. Environmental Science, 2023, 44(8): 4655-4665.
|
[16] |
NIE X, LU B, CHEN Z P, et al. Increase or decrease: integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage[J]. Ecological Indicators,2020,118:106708. doi: 10.1016/j.ecolind.2020.106708
|
[17] |
牛远, 胡小贞, 王琳杰, 等.抚仙湖流域山水林田湖草生态保护修复思路与实践[J]. 环境工程技术学报,2019,9(5):482-490.
NIU Y, HU X Z, WANG L J, et al. Ideas and practice of ecological protection and restoration of mountain-river-forest-farmland-lake-grassland system in Lake Fuxian Basin[J]. Journal of Environmental Engineering Technology,2019,9(5):482-490.
|
[18] |
LIU S Y, HU N K, ZHANG J, et al. Spatiotemporal change of carbon storage in the Loess Plateau of northern Shaanxi, based on the InVEST Model[J]. Sciences in Cold and Arid Regions,2018,10(3):240-250.
|
[19] |
方精云, 黄耀, 朱江玲, 等.森林生态系统碳收支及其影响机制[J]. 中国基础科学,2015,17(3):20-25.
FANG J Y, HUANG Y, ZHU J L, et al. Carbon budget of forest ecosystems and its driving forces[J]. China Basic Science,2015,17(3):20-25.
|
[20] |
林彤, 杨木壮, 吴大放, 等.基于InVEST-PLUS模型的碳储量空间关联性及预测: 以广东省为例[J]. 中国环境科学,2022,42(10):4827-4839.
LIN T, YANG M Z, WU D F, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model: a case study in Guangdong Province[J]. China Environmental Science,2022,42(10):4827-4839.
|
[21] |
荣检. 基于InVEST模型的广西西江流域生态系统产水与固碳服务功能研究[D]. 南宁: 广西师范学院, 2017.
|
[22] |
陈光水, 杨玉盛, 谢锦升, 等.中国森林的地下碳分配[J]. 生态学报,2007,27(12):5148-5157.
CHEN G S, YANG Y S, XIE J S, et al. Total belowground carbon allocation in China's forests[J]. Acta Ecologica Sinica,2007,27(12):5148-5157.
|
[23] |
ALAM S A, STARR M, CLARK B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: a regional carbon sequestration study[J]. Journal of Arid Environments,2013,89:67-76. doi: 10.1016/j.jaridenv.2012.10.002
|
[24] |
杨俊毅, 李俊生, 关潇.乌江流域固碳服务时空格局及驱动机制[J]. 环境科学研究,2023,36(4):757-767.
YANG J Y, LI J S, GUAN X. Spatio-temporal pattern and driving mechanism of ecosystem carbon sequestration services in the Wujiang River Basin[J]. Research of Environmental Sciences,2023,36(4):757-767.
|
[25] |
QIN M L, ZHAO Y C, LIU Y T, et al. Multi-scenario simulation for 2060 and driving factors of the eco-spatial carbon sink in the Beibu Gulf Urban Agglomeration, China[J]. Chinese Geographical Science, 2023, 33: 85-101.
|
[26] |
李欣, 王志远, 刘丹丹, 等.生态安全格局约束下长株潭都市圈建设用地演变模拟与管控[J]. 环境工程技术学报,2023,13(1):348-358.
LI X, WANG Z Y, LIU D D, et al. Simulation and control of the evolution of construction land in Changzhutan Metropolitan Area under the constraints of ecological security pattern[J]. Journal of Environmental Engineering Technology,2023,13(1):348-358.
|
[27] |
王秀兰.土地利用/土地覆盖变化中的人口因素分析[J]. 资源科学,2000,22(3):39-42.
WANG X L. Analysis on demographic factors and land use/land cover change[J]. Resources Science,2000,22(3):39-42.
|
[28] |
黄海舟, 兰涌.基于ArcGIS软件的广西耕地连片分析及应用: 广西耕地红线研究系列论文之三[J]. 广西师范学院学报(哲学社会科学版),2018,39(6):142-148.
HUANG H Z, LAN Y. The analysis and application of Guangxi’s concentrated arable land based on ArcGIS: on boundary line of Guangxi’s arable land (research paper Ⅲ)[J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition),2018,39(6):142-148.
|
[29] |
梁保平, 雷艳, 覃业努, 等.快速城市化背景下广西典型城市景观空间格局动态比较研究[J]. 生态学报,2018,38(12):4526-4536.
LIANG B P, LEI Y, QIN Y N, et al. Comparison of changing landscape patterns in the rapidly urbanizing cities of Guangxi[J]. Acta Ecologica Sinica,2018,38(12):4526-4536.
|
[30] |
苏常红, 傅伯杰.景观格局与生态过程的关系及其对生态系统服务的影响[J]. 自然杂志,2012,34(5):277-283.
SU C H, FU B J. Discussion on links among landscape pattern, ecological process, and ecosystem services[J]. Chinese Journal of Nature,2012,34(5):277-283. ◇
|