Volume 13 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
LIU C H,YANG W J,ZHANG X M,et al.Research advances and prospects of source separation and recycling technologies of toilet black water[J].Journal of Environmental Engineering Technology,2023,13(6):2165-2173 doi: 10.12153/j.issn.1674-991X.20221262
Citation: LIU C H,YANG W J,ZHANG X M,et al.Research advances and prospects of source separation and recycling technologies of toilet black water[J].Journal of Environmental Engineering Technology,2023,13(6):2165-2173 doi: 10.12153/j.issn.1674-991X.20221262

Research advances and prospects of source separation and recycling technologies of toilet black water

doi: 10.12153/j.issn.1674-991X.20221262
  • Received Date: 2022-12-20
    Available Online: 2023-11-24
  • Toilets are the basic facilities of daily life, playing an important role in improving human living environment. Toilet black water mainly consists of feces and urine with a large amount of organics and nutrients such as nitrogen and phosphorus, and its source separation and recycling are becoming an urgent environmental and technological issue. Through literature research and analysis, the main technical route of toilet black water source separation and recycling was sorted out. Focusing on the source separation of toilet black water, the new developed source separation equipment and their application scope were summarized. Based on the characteristics of fecal wastewater and urine, the research progress of main treatment and resource recycling technologies of different wastewater after source separation were analyzed systematically, and the fundamental tasks of pollution control and efficient recovery of carbon, nitrogen and phosphorus were revealed. Finally, the challenges on the assessment and green development of toilet black water source separation and recycling technologies, reasonable combination of multiple technologies, and centralized and intelligent operation and management were summarized and relevant suggestions were proposed, according to the current research and engineering application. This study aimed to provide theoretical basis and key reference for promoting the large-scale application of suitable source separation and recycling technologies of toilet black water in accordance with local conditions.

     

  • loading
  • [1]
    FU B, XIAO X A, LI J Z. Big data-driven measurement of the service capacity of public toilet facilities in China[J]. Applied Sciences,2022,12(9):4659. doi: 10.3390/app12094659
    [2]
    沈峥, 刘洪波, 张亚雷. 中国“厕所革命”的现状、问题及其对策思考[J]. 中国环境管理,2018,10(2):45-48. doi: 10.16868/j.cnki.1674-6252.2018.02.045

    SHEN Z, LIU H B, ZHANG Y L. The current situation, issues and strategies of "toilet revolution" in China[J]. Chinese Journal of Environmental Management,2018,10(2):45-48. doi: 10.16868/j.cnki.1674-6252.2018.02.045
    [3]
    ZHOU X Q, SIMHA P, PEREZ-MERCADO L F, et al. China should focus beyond access to toilets to tap into the full potential of its Rural Toilet Revolution[J]. Resources, Conservation and Recycling,2022,178:106100. doi: 10.1016/j.resconrec.2021.106100
    [4]
    BRANDS E. Prospects and challenges for sustainable sanitation in developed nations: a critical review[J]. Environmental Reviews,2014,22(4):346-363. doi: 10.1139/er-2013-0082
    [5]
    LAM L, KURISU K, HANAKI K. Comparative environmental impacts of source-separation systems for domestic wastewater management in rural China[J]. Journal of Cleaner Production,2015,104:185-198. doi: 10.1016/j.jclepro.2015.04.126
    [6]
    王洪良. 浓集生活废物资源化处理利用技术研究: 面向下一代乡村环境卫生模式构建[D]. 北京: 中国科学院大学, 2018.
    [7]
    尹文俊, 陈家斌, 刘勇锋, 等. 源分离厕所粪尿无害化及资源化技术研究进展[J]. 给水排水,2020,56(增刊1):493-499. doi: 10.13789/j.cnki.wwe1964.2020.S1.114

    YIN W J, CHEN J B, LIU Y F, et al. Research progress on harmless and recycling technology of source separation toilet manure and urine[J]. Water & Wastewater Engineering,2020,56(Suppl 1):493-499. doi: 10.13789/j.cnki.wwe1964.2020.S1.114
    [8]
    叶美瀛, 王平波, 刘宇奇, 等. 室外真空排水系统及其在我国农村生活污水治理工程中的应用[J]. 环境工程技术学报,2021,11(6):1196-1201. doi: 10.12153/j.issn.1674-991X.20210074

    YE M Y, WANG P B, LIU Y Q, et al. Outdoor vacuum sewerage system and its application in rural sewage treatment engineering in China[J]. Journal of Environmental Engineering Technology,2021,11(6):1196-1201. doi: 10.12153/j.issn.1674-991X.20210074
    [9]
    MALILA R, LEHTORANTA S, VISKARI E L. The role of source separation in nutrient recovery: comparison of alternative wastewater treatment systems[J]. Journal of Cleaner Production,2019,219:350-358. doi: 10.1016/j.jclepro.2019.02.024
    [10]
    周燕, 梅小乐, 杜兵. 国内外生态厕所类型分析及其应用研究[J]. 北方环境,2013,25(6):21-25.

    ZHOU Y, MEI X L, DU B. The analysis and applicable study on types of foreign and domestic ecological toilets[J]. Northern Environment,2013,25(6):21-25.
    [11]
    WANG X M, CHEN J X, LI Z F, et al. Nutrient recovery technologies for management of blackwater:a review[J]. Frontiers in Environmental Science,2023,10:1080536. doi: 10.3389/fenvs.2022.1080536
    [12]
    GAO M J, ZHANG L, FLORENTINO A P, et al. Performance of anaerobic treatment of blackwater collected from different toilet flushing systems: can we achieve both energy recovery and water conservation[J]. Journal of Hazardous Materials,2019,365:44-52. doi: 10.1016/j.jhazmat.2018.10.055
    [13]
    党成成, 谢国俊, 邢德峰, 等. 无水冲生态厕所的类型和发展应用[J]. 中国资源综合利用,2021,39(7):28-32.

    DANG C C, XIE G J, XING D F, et al. Types and development applications of non-flushing ecological toilets[J]. China Resources Comprehensive Utilization,2021,39(7):28-32.
    [14]
    潘理黎, 吕伯昇, 严国奇, 等. 我国免水生态厕所的发展现状与展望[J]. 科技导报,2005,23(11):66-68. doi: 10.3321/j.issn:1000-7857.2005.11.020

    PAN L L, LU B S, YAN G Q, et al. Current situation and prospect of ecological toilet without water in China[J]. Science & Technology Review,2005,23(11):66-68. doi: 10.3321/j.issn:1000-7857.2005.11.020
    [15]
    高铁山, 高兴瑞, 刘涛, 等. 一种气水混合型冲厕装置: CN211172264U[P]. 2020-08-04.
    [16]
    黄碧捷, 陈书雪. 生物预处理与城市分质供水[J]. 中国环保产业,2007(9):37-39. doi: 10.3969/j.issn.1006-5377.2007.09.008

    HUANG B J, CHEN S X. Biological pretreatment and water quality based on water supply in urban area[J]. China Environmental Protection Industry,2007(9):37-39. doi: 10.3969/j.issn.1006-5377.2007.09.008
    [17]
    张奇誉, 刘来胜. 农村分散式生活污水源分离技术现状与发展趋势分析[J]. 中国农村水利水电,2020(8):20-24. doi: 10.3969/j.issn.1007-2284.2020.08.004

    ZHANG Q Y, LIU L S. An analysis of the current situationand development trend of rural decentralized domestic sewage based on source separation technology[J]. China Rural Water and Hydropower,2020(8):20-24. doi: 10.3969/j.issn.1007-2284.2020.08.004
    [18]
    李子富, 王晓希, 王婷婷, 等. 城市生态卫生排水系统及其应用[J]. 建设科技,2010(21):44-47. doi: 10.3969/j.issn.1671-3915.2010.21.013

    LI Z F, WANG X X, WANG T T, et al. Urban ecological sanitation drainage system and its application[J]. Construction Science and Technology,2010(21):44-47. doi: 10.3969/j.issn.1671-3915.2010.21.013
    [19]
    赵丙良, 袁林江, 张娜, 等. 改良型外循环厌氧反应器处理黑水特性研究[J]. 水处理技术,2011,37(12):86-89. doi: 10.16796/j.cnki.1000-3770.2011.12.021

    ZHAO B L, YUAN L J, ZHANG N, et al. Treatment of blackwater with modified uasb reactor[J]. Technology of Water Treatment,2011,37(12):86-89. doi: 10.16796/j.cnki.1000-3770.2011.12.021
    [20]
    施凡. 绿墙系统处理灰水和黑水的研究[D]. 温州: 温州大学, 2021.
    [21]
    WEN C X, DAI Z Q, CHENG F K, et al. Review on research achievements of blackwater anaerobic digestion for enhanced resource recovery[J]. Environment, Development and Sustainability, 2022: 1-31.
    [22]
    WANG H H, LI Z F, ZHOU X Q, et al. Anaerobic co-digestion of kitchen waste and blackwater for different practical application scenarios in decentralized scale: from wastes to energy recovery[J]. Water,2020,12(9):2556. doi: 10.3390/w12092556
    [23]
    XU R, XU S N, ZHANG L, et al. Impact of zero valent iron on blackwater anaerobic digestion[J]. Bioresource Technology,2019,285:121351. doi: 10.1016/j.biortech.2019.121351
    [24]
    PAULO P L, AZEVEDO C, BEGOSSO L, et al. Natural systems treating greywater and blackwater on-site: integrating treatment, reuse and landscaping[J]. Ecological Engineering,2013,50:95-100. doi: 10.1016/j.ecoleng.2012.03.022
    [25]
    王洪波, 孙𦔯, 王晓昌. 以锯末为微生物载体的好氧堆肥反应器对人粪便降解特性的研究[J]. 安全与环境学报, 2008, 8(2): 43-46.

    WANG H B, SUN S, WANG X C. A study on the characteristic features of feces decomposition by using sawdust as microbial carrier for an aerobic compositing reactor[J]. Journal of Safety and Environment, 2008, 8(2): 43-46.
    [26]
    GERMER J, BOH M Y, SCHOEFFLER M, et al. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter[J]. Waste Management,2010,30(2):185-191. doi: 10.1016/j.wasman.2009.09.030
    [27]
    OARGA-MULEC A, JENSSEN P D, KRIVOGRAD KLEMENČIČ A, et al. Zero-discharge solution for blackwater treatment at remote tourist facilities[J]. Journal of Cleaner Production,2017,166:798-805. doi: 10.1016/j.jclepro.2017.08.002
    [28]
    ANDREEV N, RONTELTAP M, BOINCEAN B, et al. Treatment of source-separated human feces via lactic acid fermentation combined with thermophilic composting[J]. Compost Science & Utilization,2017,25(4):220-230.
    [29]
    HILL G B, BALDWIN S A. Vermicomposting toilets, an alternative to latrine style microbial composting toilets, prove far superior in mass reduction, pathogen destruction, compost quality, and operational cost[J]. Waste Management,2012,32(10):1811-1820. doi: 10.1016/j.wasman.2012.04.023
    [30]
    ZHANG H Y, SCHUCHARDT F, LI G X, et al. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)[J]. Waste Management,2013,33(4):957-963. doi: 10.1016/j.wasman.2012.11.008
    [31]
    KRUEGER B C, FOWLER G D, TEMPLETON M R, et al. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste[J]. Water Research,2020,169:115253. doi: 10.1016/j.watres.2019.115253
    [32]
    MAWIOO P M, RWEYEMAMU A, GARCIA H A, et al. Evaluation of a microwave based reactor for the treatment of blackwater sludge[J]. Science of the Total Environment,2016,548/549:72-81. doi: 10.1016/j.scitotenv.2016.01.013
    [33]
    XU X W, TU R, SUN Y, et al. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk[J]. Bioresource Technology,2019,271:427-438. doi: 10.1016/j.biortech.2018.09.066
    [34]
    FAKKAEW K, KOOTTATEP T, POLPRASERT C. Faecal sludge treatment and utilization by hydrothermal carbonization[J]. Journal of Environmental Management,2018,216:421-426. doi: 10.1016/j.jenvman.2017.09.031
    [35]
    FAKKAEW K, KOOTTATEP T, POLPRASERT C. Effects of hydrolysis and carbonization reactions on hydrochar production[J]. Bioresource Technology,2015,192:328-334. doi: 10.1016/j.biortech.2015.05.091
    [36]
    王影娴, 吴向阳, 王猛, 等. 厕所粪便与粗甘油共液化制备生物原油研究[J]. 农业工程学报,2019,35(22):181-186. doi: 10.11975/j.issn.1002-6819.2019.22.021

    WANG Y X, WU X Y, WANG M, et al. Biocrude oil production via co-liquefaction of toilet feces and crude glycerol[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(22):181-186. doi: 10.11975/j.issn.1002-6819.2019.22.021
    [37]
    EBOIBI B E, LEWIS D M, ASHMAN P J, et al. Integrating anaerobic digestion and hydrothermal liquefaction for renewable energy production: an experimental investigation[J]. Environmental Progress & Sustainable Energy,2015,34(6):1662-1673.
    [38]
    SAHONDO T, HENNESSY S, SINDALL R C, et al. Field testing of a household-scale onsite blackwater treatment system in South Africa[J]. Science of the Total Environment,2020,703:135469. doi: 10.1016/j.scitotenv.2019.135469
    [39]
    ROGERS T W, ROGERS T S, STONER M H, et al. A granular activated carbon/electrochemical hybrid system for onsite treatment and reuse of blackwater[J]. Water Research,2018,144:553-560. doi: 10.1016/j.watres.2018.07.070
    [40]
    WELLING C M, SASIDARAN S, KACHORIA P, et al. Field testing of a household-scale onsite blackwater treatment system in Coimbatore, India[J]. Science of the Total Environment,2020,713:136706. doi: 10.1016/j.scitotenv.2020.136706
    [41]
    THOSTENSON J O, MOUROUVIN R, HAWKINS B T, et al. Improved blackwater disinfection using potentiodynamic methods with oxidized boron-doped diamond electrodes[J]. Water Research,2018,140:191-199. doi: 10.1016/j.watres.2018.04.022
    [42]
    NAGY J, ZSENI A. Human urine as an efficient fertilizer product in agriculture[J]. Agronomy Research,2017,15(2):490-500.
    [43]
    LARSEN T A, RIECHMANN M E, UDERT K M. State of the art of urine treatment technologies: a critical review[J]. Water Research X,2021,13:100114. doi: 10.1016/j.wroa.2021.100114
    [44]
    SIMHA P, GANESAPILLAI M. Ecological sanitation and nutrient recovery from human urine: how far have we come: a review[J]. Sustainable Environment Research,2017,27(3):107-116. doi: 10.1016/j.serj.2016.12.001
    [45]
    MARTIN T M P, ESCULIER F, LEVAVASSEUR F, et al. Human urine-based fertilizers: a review[J]. Critical Reviews in Environmental Science and Technology,2022,52(6):890-936. doi: 10.1080/10643389.2020.1838214
    [46]
    RANDALL D G, NAIDOO V. Urine: the liquid gold of wastewater[J]. Journal of Environmental Chemical Engineering,2018,6(2):2627-2635. doi: 10.1016/j.jece.2018.04.012
    [47]
    ALEMAYEHU Y A, ASFAW S L, TERFIE T A. Nutrient recovery options from human urine: a choice for large scale application[J]. Sustainable Production and Consumption,2020,24:219-231. doi: 10.1016/j.spc.2020.06.016
    [48]
    TANSEL B, LUNN G, MONJE O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions[J]. Chemosphere,2018,194:504-514. doi: 10.1016/j.chemosphere.2017.12.004
    [49]
    PATEL A, MUNGRAY A A, MUNGRAY A K. Technologies for the recovery of nutrients, water and energy from human urine: a review[J]. Chemosphere,2020,259:127372. doi: 10.1016/j.chemosphere.2020.127372
    [50]
    蒋善庆, 王晓昌, 李超, 等. 源分离尿液资源化利用与风险控制技术研究进展[J]. 安全与环境学报,2014,14(5):174-182. doi: 10.13637/j.issn.1009-6094.2014.05.040

    JIANG S Q, WANG X C, LI C, et al. Review on the resource utilization and risks control technologies of source separated urine[J]. Journal of Safety and Environment,2014,14(5):174-182. doi: 10.13637/j.issn.1009-6094.2014.05.040
    [51]
    MERINO-JIMENEZ I, CELORRIO V, FERMIN D J, et al. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine[J]. Water Research,2017,109:46-53. doi: 10.1016/j.watres.2016.11.017
    [52]
    SAKTHIVEL S R, TILLEY E, UDERT K M. Wood ash as a magnesium source for phosphorus recovery from source-separated urine[J]. Science of the Total Environment,2012,419:68-75. doi: 10.1016/j.scitotenv.2011.12.065
    [53]
    SENDROWSKI A, BOYER T H. Phosphate removal from urine using hybrid anion exchange resin[J]. Desalination,2013,322:104-112. doi: 10.1016/j.desal.2013.05.014
    [54]
    GUAN T, KUANG Y, LI X D, et al. The recovery of phosphorus from source-separated urine by repeatedly usable magnetic Fe3O4@ZrO2 nanoparticles under acidic conditions[J]. Environment International,2020,134:105322. doi: 10.1016/j.envint.2019.105322
    [55]
    TARPEH W A, UDERT K M, NELSON K L. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine[J]. Environmental Science & Technology,2017,51(4):2373-2381.
    [56]
    LINARES R V, YANGALI-QUINTANILLA V, LI Z Y, et al. Rejection of micropollutants by clean and fouled forward osmosis membrane[J]. Water Research,2011,45(20):6737-6744. doi: 10.1016/j.watres.2011.10.037
    [57]
    JIANG Q, LIU J, SONG X R, et al. Energy efficient bioelectro-concentration and recovery system of nutrients from human urine by integrating forward osmosis[J]. Resources, Conservation and Recycling,2022,181:106253. doi: 10.1016/j.resconrec.2022.106253
    [58]
    PRONK W, PALMQUIST H, BIEBOW M, et al. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine[J]. Water Research,2006,40(7):1405-1412. doi: 10.1016/j.watres.2006.01.038
    [59]
    TUN L L, JEONG D, JEONG S, et al. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation[J]. Journal of Membrane Science,2016,512:13-20. doi: 10.1016/j.memsci.2016.04.004
    [60]
    ZHANG J H, XIE M F, TONG X, et al. Ammonia capture from human urine to harvest liquid N-P compound fertilizer by a submerged hollow fiber membrane contactor: performance and fertilizer analysis[J]. Science of the Total Environment,2021,768:144478. doi: 10.1016/j.scitotenv.2020.144478
    [61]
    YU C Z, YIN W J, YU Z J, et al. Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review[J]. RSC Advances,2021,11(56):35525-35535. doi: 10.1039/D1RA05816A
    [62]
    LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337:686-690. doi: 10.1126/science.1217412
    [63]
    CHEN X, LIANG P, ZHANG X Y, et al. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery[J]. Bioresource Technology,2016,215:274-284. doi: 10.1016/j.biortech.2016.02.107
    [64]
    HOU D X, LU L, SUN D Y, et al. Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors[J]. Water Research,2017,114:181-188. doi: 10.1016/j.watres.2017.02.034
    [65]
    JIANG Q, SONG X R, LIU J, et al. In-situ enrichment and removal of Cu(Ⅱ) and Cd(Ⅱ) from low-strength wastewater by a novel microbial metals enrichment and recovery cell (MMERC)[J]. Journal of Power Sources,2020,451:227627. doi: 10.1016/j.jpowsour.2019.227627
    [66]
    IEROPOULOS I, GREENMAN J, MELHUISH C. Urine utilisation by microbial fuel cells;energy fuel for the future[J]. Physical Chemistry Chemical Physics,2012,14(1):94-98. doi: 10.1039/C1CP23213D
    [67]
    BARBOSA S G, PEIXOTO L, TER HEIJNE A, et al. Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine[J]. Environmental Science:Water Research & Technology,2017,3(5):897-904.
    [68]
    LIAO M L, LIU Y, TIAN E L, et al. Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell[J]. Chemical Engineering Journal,2020,391:123517. doi: 10.1016/j.cej.2019.123517
    [69]
    IKEMATSU M, KANEDA K, ISEKI M, et al. Electrochemical treatment of human urine for its storage and reuse as flush water[J]. Science of the Total Environment,2007,382(1):159-164. ◇
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article Views(268) PDF Downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return