Citation: | LI P,LIU J,LU S J,et al.Preparation and application of an immobilized bio-filler[J].Journal of Environmental Engineering Technology,2023,13(6):2240-2247 doi: 10.12153/j.issn.1674-991X.20230054 |
A kind of immobilized bio-filler (BM filler) was prepared by immobilization technology, combining polyvinyl alcohol (PVA) and sodium alginate (SA) to construct a gel skeleton, introducing activated carbon (AC), CaCO3, and composite bacterial powder, and optimizing the particle size of AC added to BM filler. The removal effect of the biological trickling filter (BTF) packed with the filler was investigated using ethylbenzene as the target pollutant. When the added AC was 100 mesh, the specific surface area of BM filler reached 57.46 m2/g with the highest mechanical strength and the best degradation effect on ethylbenzene. The results of physicochemical properties analysis showed that the filler had a dense three-dimensional internal mesh structure, with good hydrophilicity and adsorption capacity, and a large number of hydrophilic groups such as —OH and —COO− on the surface, and the adsorption of ethylbenzene was 2.9 times higher than that of polyurethane sponge (PU) filler under the same conditions. Meanwhile, the filler had good acid resistance and still maintained a high degradation activity when pH dropped to 1. The BTF packed with BM filler could be started up in 6 days; after 7 days of stagnation, the removal efficiency recovered to 100% in 5 days; and ethylbenzene could still be completely removed at the inlet ethylbenzene concentration of 800-900 mg/m3 and the empty bed residence time (EBRT) of 33 s. Compared with the BTF packed with PU filler, the BTF packed with BM filler showed superior performance.
[1] |
MEENA M, SONIGRA P, YADAV G. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals[J]. Environmental Science and Pollution Research,2021,28(3):2485-2508. doi: 10.1007/s11356-020-11112-4
|
[2] |
RYBARCZYK P, SZULCZYŃSKI B, GĘBICKI J, et al. Treatment of malodorous air in biotrickling filters: a review[J]. Biochemical Engineering Journal,2019,141:146-162. doi: 10.1016/j.bej.2018.10.014
|
[3] |
WU H, YAN H Y, QUAN Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal of Environmental Management,2018,222:409-419.
|
[4] |
BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment: a review[J]. Journal of Cleaner Production,2017,152:223-241. doi: 10.1016/j.jclepro.2017.03.093
|
[5] |
MANCZARSKI P, LELICIŃSKA-SERAFIN K, ROLEWICZ-KALIŃSKA A. Assessment of the efficiency of biological treatment of gases from municipal waste processing[J]. Ecological Chemistry and Engineering S,2019,26(4):687-696. doi: 10.1515/eces-2019-0049
|
[6] |
CHENG Y, HE H J, YANG C P, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances,2016,34(6):1091-1102. doi: 10.1016/j.biotechadv.2016.06.007
|
[7] |
李林洲, 颜玉玺, 金博强, 等.净化挥发性有机物生物滤塔填料研究进展[J]. 环境科学与技术,2020,43(9):52-58.
LI L Z, YAN Y X, JIN B Q, et al. Review in filler of biofilter for the volatile organic compounds purification[J]. Environmental Science & Technology,2020,43(9):52-58.
|
[8] |
LEE S H, KURADE M B, JEON B H, et al. Water condition in biotrickling filtration for the efficient removal of gaseous contaminants[J]. Critical Reviews in Biotechnology,2021,41(8):1279-1296. doi: 10.1080/07388551.2021.1917506
|
[9] |
BU H, CARVALHO G, HUANG C, et al. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter[J]. Chemosphere,2022,291:132723. doi: 10.1016/j.chemosphere.2021.132723
|
[10] |
于承泽, 李鸣晓, 孟繁华, 等.生物滤池去除恶臭气体工艺填料优选研究[J]. 环境科学研究,2021,34(8):1876-1885.
YU C Z, LI M X, MENG F F, et al. Optimization of packing material in biofilter for removingodors[J]. Research of Environmental Sciences,2021,34(8):1876-1885.
|
[11] |
DOU X N, LIU J, QI H Y, et al. Synergistic removal of m-xylene and its corresponding mechanism in a biotrickling filter[J]. Process Biochemistry,2022,118:404-412. doi: 10.1016/j.procbio.2022.05.010
|
[12] |
ZHU R C, LI S Y, WU Z J, et al. Performance evaluation of a slow-release packing material-embedded functional microorganisms for biofiltration[J]. Environmental Technology,2017,38(8):945-955. doi: 10.1080/09593330.2016.1214624
|
[13] |
刘春敬, 李坚, 刘佳, 等.分期布液生物滴滤床净化H2S废气性能研究[J]. 环境科学,2012,33(9):2987-2992.
LIU C J, LI J, LIU J, et al. Performance of cross flow trickling filter for H2S gas treatment[J]. Environmental Science,2012,33(9):2987-2992.
|
[14] |
LEE S H, LI C N, HEBER A J, et al. Ethylene removal using biotrickling filters: part I. experimental description[J]. Chemical Engineering Journal,2010,158(2):79-88. doi: 10.1016/j.cej.2009.12.033
|
[15] |
LIU J W, YUE P, HUANG L H, et al. Styrene removal with an acidic biofilter with four packing materials: performance and fungal bioaerosol emissions[J]. Environmental Research,2020,191:110154. doi: 10.1016/j.envres.2020.110154
|
[16] |
刘强, 马广大, 贾立岩, 等.生物滴滤床净化二甲苯废气的性能研究[J]. 环境科学研究,2002,15(6):35-38.
LIU Q, MA G D, JIA L Y, et al. Study on the performance of trickling biofilter in purifying xylene in waste gas[J]. Research of Environmental Sciences,2002,15(6):35-38.
|
[17] |
SAN-VALERO P, GABALDÓN C, PENYA-ROJA J M, et al. Enhanced styrene removal in a two-phase partitioning bioreactor operated as a biotrickling filter: towards full-scale applications[J]. Chemical Engineering Journal,2017,309:588-595. doi: 10.1016/j.cej.2016.10.054
|
[18] |
YANG N Y, WANG C, HAN M F. Gel-encapsulated microorganisms used as a strategy to rapidly recover biofilters after starvation interruption[J]. Journal of Environmental Management,2020,261:110237. doi: 10.1016/j.jenvman.2020.110237
|
[19] |
CHENG Z W, FENG K, XU D H, et al. An innovative nutritional slow-release packing material with functional microorganisms for biofiltration: characterization and performance evaluation[J]. Journal of Hazardous Materials,2019,366:16-26. doi: 10.1016/j.jhazmat.2018.11.070
|
[20] |
LI T, REN Y, WEI C H. Study on preparation and properties of PVA-SA-PHB-AC composite carrier for microorganism immobilization[J]. Journal of Applied Polymer Science,2014,131(3):1-10.
|
[21] |
黄良仙, 韩星星, 牛育华, 等.聚乙烯醇/海藻酸钠双交联凝胶球的制备及其应用[J]. 精细化工,2021,38(7):1459-1472.
HUANG L X, HAN X X, NIU Y H, et al. Preparation and application of polyvinyl alcohol/sodium alginate double cross-linked gel beads[J]. Fine Chemicals,2021,38(7):1459-1472.
|
[22] |
GONG H J, CHEN Z Z, FAN Y M, et al. Surface modification of activated carbon for siloxane adsorption[J]. Renewable Energy,2015,83:144-150. doi: 10.1016/j.renene.2015.04.004
|
[23] |
杜青平, 陈展明, 李彦旭, 等.活性炭含量对PVA-SA固定化小球处理氯苯微污染废水的影响[J]. 广东工业大学学报,2017,34(4):22-26.
DU Q P, CHEN Z M, LI Y X, et al. Effects of activated carbon in sodium alginate and polyvinylacohol immobilization pellets of Penicillium sp. on chlorobenzene removal[J]. Journal of Guangdong University of Technology,2017,34(4):22-26.
|
[24] |
YANG N Y, WANG C, HAN M F, et al. Performance improvement of a biofilter by using gel-encapsulated microorganisms assembled in a 3D mesh material[J]. Chemosphere,2020,251:126618. doi: 10.1016/j.chemosphere.2020.126618
|
[25] |
ASADI S, ERIS S, AZIZIAN S. Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions[J]. ACS Omega,2018,3(11):15140-15148. doi: 10.1021/acsomega.8b02498
|
[26] |
KONG Y, ZHUANG Y, HAN Z Y, et al. Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites[J]. Journal of Environmental Sciences,2019,78:81-91. doi: 10.1016/j.jes.2018.07.006
|
[27] |
ZHUANG Y, KONG Y, HAN K, et al. A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial[J]. New Journal of Chemistry,2017,41(24):15127-15135. doi: 10.1039/C7NJ03392C
|
[28] |
王淑雅, 刘灵婕, 王芬, 等.低温等离子体技术改性填料前后Anammox工艺运行及微生物群落变化[J]. 环境工程学报,2020,14(2):285-294.
WANG S Y, LIU L J, WANG F, et al. Variation of operating and microbial community of Anammox process with convertional and modified filler by low temperature plasma technology[J]. Chinese Journal of Environmental Engineering,2020,14(2):285-294.
|
[29] |
MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours: a review[J]. Journal of Environmental Management,2010,91(5):1039-1054. doi: 10.1016/j.jenvman.2010.01.006
|
[30] |
黄强, 张明强.固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环境工程技术学报,2012,2(3):247-252.
HUANG Q, ZHANG M Q. Biodegradation of p-Nitrophenol by immobilized cells of Pseudomonas aeruginosa[J]. Journal of Environmental Engineering Technology,2012,2(3):247-252.
|
[31] |
张瑞斌, 潘卓兮, 王乐阳, 等.固定化菌藻填料强化人工湿地脱氮除磷效果研究[J]. 环境工程技术学报,2021,11(1):91-96.
ZHANG R B, PAN Z X, WANG L Y, et al. Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland[J]. Journal of Environmental Engineering Technology,2021,11(1):91-96.
|
[32] |
卢仁钵, 杜青平, 许燕滨, 等.降解乙苯生物滴滤塔稳定运行期生物膜特征及微生物多样性研究[J]. 环境科学学报,2016,36(10):3561-3568.
LU R B, DU Q P, XU Y B, et al. Biofilm characteristics and microbial diversity in ethylbenzene degradation BTF during the stable operation periods[J]. Acta Scientiae Circumstantiae,2016,36(10):3561-3568.
|
[33] |
de VELA R J L, GOSTOMSKI P A. Minimising biomass accumulation in biotrickling filters[J]. Reviews in Environmental Science and Bio/Technology,2018,17(3):417-430. doi: 10.1007/s11157-018-9471-4
|
[34] |
HERNÁNDEZ J, LAFUENTE J, PRADO Ó J, et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3[J]. Journal of the Air & Waste Management Association,2013,63(4):462-471. □
|