Citation: | WANG H F,GUO Y F,GUO Z,et al.Research progress on the degradation of environmental organic pollutants by activated peracetic acid technology[J].Journal of Environmental Engineering Technology,2023,13(6):2154-2164 doi: 10.12153/j.issn.1674-991X.20230056 |
The frequent detection of emerging contaminants poses a potential risk to ecosystems and human health, such as antibiotics and endocrine disruptors in the environment in recent years. The research and development of efficient and stable organic pollutant control technology is a research hotspot in the current environmental field. Taking the advanced oxidation technology of activated peracetic acid (PAA) as the research example, the effectiveness of activated PAA through transition metals, carbon materials and their composites, and their degradation mechanism of organics were discussed, with emphasis on the degradation mechanism of free radicals (organic radicals, hydroxyl radicals) and non-radicals (singlet oxygen, high-valent metal-Oxo species, electron transfer and surface complexes). In addition, the application effect of activated PAA in wastewater, soil or sediments, groundwater, and other environmental media for the degradation of organic pollutants was summarized. Finally, future research focuses were proposed, including developing the catalysts of activated PAA with efficiency and stability, strengthening the mechanism exploration of activated PAA to degrade organic pollutants in soil and sediment, and deepening the application studies of combined treatment technologies.
[1] |
敖蒙蒙, 魏健, 陈忠林, 等.四环素类抗生素环境行为及其生态毒性研究进展[J]. 环境工程技术学报,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096
AO M M, WEI J, CHEN Z L, et al. Research progress on environmental behaviors and ecotoxicity of tetracycline antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096
|
[2] |
ZHANG K J, ZHOU X Y, DU P H, et al. Oxidation of β-lactam antibiotics by peracetic acid: reaction kinetics, product and pathway evaluation[J]. Water Research,2017,123:153-161. doi: 10.1016/j.watres.2017.06.057
|
[3] |
王静晓, 朱柯安, 陈飞.氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J]. 环境科学研究,2021,34(12):2850-2858. doi: 10.13198/j.issn.1001-6929.2021.09.19
WANG J X, ZHU K A, CHEN F. Degradation performance and mechanism of rhodamine B by chloride activated peracetic acid[J]. Research of Environmental Sciences,2021,34(12):2850-2858. doi: 10.13198/j.issn.1001-6929.2021.09.19
|
[4] |
ZHOU F Y, LU C, YAO Y Y, et al. Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants[J]. Chemical Engineering Journal,2015,281:953-960. doi: 10.1016/j.cej.2015.07.034
|
[5] |
HOLLMAN J, DOMINIC J A, ACHARI G. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2[J]. Chemosphere,2020,248:125911. doi: 10.1016/j.chemosphere.2020.125911
|
[6] |
RIZZO L, LOFRANO G, GAGO C, et al. Antibiotic contaminated water treated by photo driven advanced oxidation processes: ultraviolet/H2O2 vs ultraviolet/peracetic acid[J]. Journal of Cleaner Production,2018,205:67-75. doi: 10.1016/j.jclepro.2018.09.101
|
[7] |
RIZZO L, AGOVINO T, NAHIM-GRANADOS S, et al. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance[J]. Water Research,2019,149:272-281. doi: 10.1016/j.watres.2018.11.031
|
[8] |
KUNIGK L, GOMES D R, FORTE F, et al. The influence of temperature on the decomposition kinetics of peracetic acid in solutions[J]. Brazilian Journal of Chemical Engineering,2001,18(2):217-220. doi: 10.1590/S0104-66322001000200009
|
[9] |
WANG J W, WAN Y, DING J Q, et al. Thermal activation of peracetic acid in aquatic solution: the mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology,2020,54(22):14635-14645.
|
[10] |
DENG J W, LIU S L, FU Y S, et al. Heat-activated peracetic acid for degradation of diclofenac: kinetics, influencing factors and mechanism[J]. Environmental Technology,2023,44(19):2946-2954. doi: 10.1080/09593330.2022.2048086
|
[11] |
WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology,2020,233:115973. doi: 10.1016/j.seppur.2019.115973
|
[12] |
LUUKKONEN T, PEHKONEN S O. Peracids in water treatment: a critical review[J]. Critical Reviews in Environmental Science and Technology,2017,47(1):1-39. doi: 10.1080/10643389.2016.1272343
|
[13] |
KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology,2019,53(22):13312-13322.
|
[14] |
田丹, 吴玮, 沈芷璇, 等.Co(Ⅱ)活化过氧乙酸降解有机染料研究[J]. 环境科学学报,2018,38(10):4023-4031. doi: 10.13671/j.hjkxxb.2018.0170
TIAN D, WU W, SHEN Z X, et al. Degradation of organic dyes with peracetic acid activated by Co(Ⅱ)[J]. Acta Scientiae Circumstantiae,2018,38(10):4023-4031. doi: 10.13671/j.hjkxxb.2018.0170
|
[15] |
KIM J, DU P H, LIU W, et al. Cobalt/peracetic acid: advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology,2020,54(8):5268-5278.
|
[16] |
WANG Z R, SHI H L, WANG S X, et al. Degradation of diclofenac by Fe(Ⅱ)-activated peracetic acid[J]. Environmental Technology,2021,42(27):4333-4341. doi: 10.1080/09593330.2020.1756926
|
[17] |
MANOLI K, LI R B, KIM J, et al. Ferrate(Ⅵ)-peracetic acid oxidation process: rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal,2022,429:132384. doi: 10.1016/j.cej.2021.132384
|
[18] |
张李. 基于过氧乙酸和过一硫酸盐的高级氧化技术去除水中双氯芬酸的研究[D]. 成都: 西南交通大学, 2021.
|
[19] |
邓杰文, 张琳悦, 付永胜, 等. Cu(Ⅱ)协同热活化过氧乙酸降解水中双氯芬酸[J/OL]. 环境化学: 1-8[2023-03-16]. https://kns.cnki.net/kcms/detail/11.1844.X.20221103.1031.002.html.
|
[20] |
RAHMANI A R, GILAN R A, ASGARI G, et al. Enhanced degradation of Rhodamine B dye by Fenton/peracetic acid and photo-Fenton/peracetic acid processes[J]. International Journal of Chemical Reactor Engineering,2022,20(12):1251-1260. doi: 10.1515/ijcre-2022-0008
|
[21] |
PAN Y W, BU Z Y, LI J, et al. Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: efficiency, the role of sulfur species, and mechanisms[J]. Separation and Purification Technology,2021,277:119402. doi: 10.1016/j.seppur.2021.119402
|
[22] |
YANG S R, HE C S, XIE Z H, et al. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species[J]. Water Research,2022,217:118402. doi: 10.1016/j.watres.2022.118402
|
[23] |
ZHANG L, FU Y S, WANG Z R, et al. Removal of diclofenac in water using peracetic acid activated by zero valent copper[J]. Separation and Purification Technology,2021,276:119319. doi: 10.1016/j.seppur.2021.119319
|
[24] |
ZHANG L L, CHEN J B, ZHANG Y L, et al. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: the significant role of H2O2 and evidence of acetylperoxy radical contribution[J]. Water Research,2022,216:118322. doi: 10.1016/j.watres.2022.118322
|
[25] |
YANG K, ZHAI Z H, LIU H L, et al. Peracetic acid activation by natural chalcopyrite for metronidazole degradation: unveiling the effects of Cu-Fe bimetallic sites and sulfur species[J]. Separation and Purification Technology,2023,305:122500. doi: 10.1016/j.seppur.2022.122500
|
[26] |
WU W, TIAN D, LIU T C, et al. Degradation of organic compounds by peracetic acid activated with Co3O4: a novel advanced oxidation process and organic radical contribution[J]. Chemical Engineering Journal,2020,394:124938. doi: 10.1016/j.cej.2020.124938
|
[27] |
HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental,2016,181:103-117. doi: 10.1016/j.apcatb.2015.07.024
|
[28] |
MENG L, DONG J Y, CHEN J, et al. Activation of peracetic acid by spinel FeCo2O4 nanoparticles for the degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2023,456:141084. doi: 10.1016/j.cej.2022.141084
|
[29] |
ZHANG L L, CHEN J B, ZHENG T L, et al. Co-Mn spinel oxides trigger peracetic acid activation for ultrafast degradation of sulfonamide antibiotics: Unveiling critical role of Mn species in boosting Co activity[J]. Water Research,2023,229:119462. doi: 10.1016/j.watres.2022.119462
|
[30] |
ZHOU G F, FU Y S, ZHOU R Y, et al. Efficient degradation of organic contaminants by magnetic cobalt ferrite combined with peracetic acid[J]. Process Safety and Environmental Protection,2022,160:376-384. doi: 10.1016/j.psep.2022.02.031
|
[31] |
ZHOU G F, ZHOU R Y, LIU Y Q, et al. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt[J]. Journal of Environmental Chemical Engineering,2022,10(3):107783. doi: 10.1016/j.jece.2022.107783
|
[32] |
周高峰, 周润宇, 刘义青, 等.零价钴活化过氧乙酸降解水中罗丹明B的研究[J]. 环境科学学报,2022,42(11):47-55.
ZHOU G F, ZHOU R Y, LIU Y Q, et al. Degrdation of rhodamine B by peracetic acid activated with zero-valent cobalt[J]. Acta Scientiae Circumstantiae,2022,42(11):47-55.
|
[33] |
ZHOU X F, WU H W, ZHANG L L, et al. Activation of peracetic acid with lanthanum cobaltite perovskite for sulfamethoxazole degradation under a neutral pH: the contribution of organic radicals[J]. Molecules,2020,25(12):2725. doi: 10.3390/molecules25122725
|
[34] |
卢建. 基于过氧化物的高级氧化体系降解水体中抗生素的研究[D]. 苏州: 苏州科技大学, 2019.
|
[35] |
刘永泽, 田幸, 张立秋, 等. 一种采用氮掺杂碳材料活化过氧乙酸降解水中有机污染物的方法: CN111606405A[P]. 2020-09-01.
|
[36] |
马军, 程平统, 吴丽颖, 孙志强, 甄宇菲, 李璐玮, 佘月城. 一种以剩余污泥制备碳基催化剂的制备方法及应用: CN113209970A[P]. 2023-05-05.
|
[37] |
张晖, 樊晓辉, 吴飞, 苗菲, 赵津津. 一种利用不同炭材料活化过氧乙酸经电子转移机制去除水中污染物的方法及其应用: CN113860472A[P]. 2022-11-01.
|
[38] |
TIAN X, LIU S Q, ZHANG B N, et al. Carbonized polyaniline-activated peracetic acid advanced oxidation process for organic removal: efficiency and mechanisms[J]. Environmental Research,2023,219:115035. doi: 10.1016/j.envres.2022.115035
|
[39] |
DAI C M, LI S, DUAN Y P, et al. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: implications for groundwater remediation[J]. Water Research,2022,216:118347. doi: 10.1016/j.watres.2022.118347
|
[40] |
陈家斌, 黄天寅, 沈芷璇, 等. 一种碳纳米管活化过氧乙酸降解废水中污染物的方法: CN108423793A[P]. 2018-08-21.
|
[41] |
KONG D Z, ZHAO Y M, FAN X R, et al. Reduced graphene oxide triggers peracetic acid activation for robust removal of micropollutants: the role of electron transfer[J]. Environmental Science & Technology,2022,56(16):11707-11717.
|
[42] |
SHI C J, WANG Y, ZHANG K, et al. Fe-biochar as a safe and efficient catalyst to activate peracetic acid for the removal of the acid orange dye from water[J]. Chemosphere,2022,307:135686. doi: 10.1016/j.chemosphere.2022.135686
|
[43] |
VIRKUTYTE J, VARMA R S. Eco-friendly magnetic iron oxide-pillared montmorillonite for advanced catalytic degradation of dichlorophenol[J]. ACS Sustainable Chemistry & Engineering,2014,2(7):1545-1550.
|
[44] |
ZHOU R Y, FU Y S, ZHOU G F, et al. Heterogeneous degradation of organic contaminants by peracetic acid activated with FeCo2S4 modified g-C3N4: identification of reactive species and catalytic mechanism[J]. Separation and Purification Technology,2022,282:120082. doi: 10.1016/j.seppur.2021.120082
|
[45] |
YANG L W, SHE L H, XIE Z H, et al. Boosting activation of peracetic acid by Co@mZVI for efficient degradation of sulfamethoxazole: interesting two-phase generation of reactive oxidized species[J]. Chemical Engineering Journal,2022,448:137667. doi: 10.1016/j.cej.2022.137667
|
[46] |
QIAN Y J, HUANG J J, CHEN J B, et al. Activation of peracetic acid by RuO2/MWCNTs to degrade sulfamethoxazole at neutral condition[J]. Chemical Engineering Journal,2022,431:134217. doi: 10.1016/j.cej.2021.134217
|
[47] |
DUAN J, CHEN L, JI H D, et al. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine[J]. Chinese Chemical Letters,2022,33(6):3172-3176. doi: 10.1016/j.cclet.2021.11.072
|
[48] |
刘振中, 万思文, 吴阳, 等. CoFe2O4/CuO活化过氧乙酸高效降解磺胺甲恶唑[J/OL]. 物理化学学报: 1-10[2023-03-16]. https://kns.cnki.net/kcms/detail/11.1892.O6.20221226.1320.001.html.
|
[49] |
周润宇, 付永胜, 周高峰, 等.石墨相氮化碳负载尖晶石型铁钴硫化物活化过氧乙酸降解自然水体中罗丹明B的研究[J]. 水处理技术,2022,48(12):77-82. doi: 10.16796/j.cnki.1000-3770.2022.12.015
ZHOU R Y, FU Y S, ZHOU G F, et al. Degradation of rhodamine B in natural waters by peracetic acid activated with FeCo2S4 modified g-C3N4[J]. Technology of Water Treatment,2022,48(12):77-82. doi: 10.16796/j.cnki.1000-3770.2022.12.015
|
[50] |
胡倩, 杨涛语, 朱斐超, 等.混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报,2022,43(11):133-140.
HU Q, YANG T Y, ZHU F C, et al. Peracetic acid activation for efficient degradation of p-nitrophenol by mixed-valence iron-based metal-organic framework[J]. Journal of Textile Research,2022,43(11):133-140.
|
[51] |
DONG J, XU W H, LIU S B, et al. Lignin-derived biochar to support CoFe2O4: effective activation of peracetic acid for sulfamethoxazole degradation[J]. Chemical Engineering Journal,2022,430:132868. doi: 10.1016/j.cej.2021.132868
|
[52] |
CHEN J C, PAVLOSTATHIS S G. Peracetic acid fate and decomposition in poultry processing wastewater streams[J]. Bioresource Technology Reports,2019,7:100285. doi: 10.1016/j.biteb.2019.100285
|
[53] |
AO X W, ELORANTA J, HUANG C H, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review[J]. Water Research,2021,188:116479. doi: 10.1016/j.watres.2020.116479
|
[54] |
ZHANG T Q, HUANG C H. Modeling the kinetics of UV/peracetic acid advanced oxidation process[J]. Environmental Science & Technology,2020,54(12):7579-7590.
|
[55] |
CARETTI C, LUBELLO C. Wastewater disinfection with PAA and UV combined treatment: a pilot plant study[J]. Water Research,2003,37(10):2365-2371. doi: 10.1016/S0043-1354(03)00025-3
|
[56] |
DAI Y H, QI C D, CAO H, et al. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: influencing factors and mechanism[J]. Separation and Purification Technology,2022,288:120716. doi: 10.1016/j.seppur.2022.120716
|
[57] |
LIU B H, GUO W Q, JIA W R, et al. Novel nonradical oxidation of sulfonamide antibiotics with co(Ⅱ)-doped g-C3N4-activated peracetic acid: role of high-valent cobalt–oxo species[J]. Environmental Science & Technology,2021,55(18):12640-12651.
|
[58] |
DU P H, WANG J J, SUN G D, et al. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(Ⅱ)/peracetic acid activation system[J]. Water Research,2022,212:118113. doi: 10.1016/j.watres.2022.118113
|
[59] |
YUAN D L, YANG K, PAN S Y, et al. Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination[J]. Separation and Purification Technology,2021,276:119317. doi: 10.1016/j.seppur.2021.119317
|
[60] |
YAN T T, PING Q, ZHANG A, et al. Enhanced removal of oxytetracycline by UV-driven advanced oxidation with peracetic acid: insight into the degradation intermediates and N-nitrosodimethylamine formation potential[J]. Chemosphere,2021,274:129726. doi: 10.1016/j.chemosphere.2021.129726
|
[61] |
AO X W, WANG W B, SUN W J, et al. Degradation and transformation of norfloxacin in medium-pressure ultraviolet/peracetic acid process: an investigation of the role of pH[J]. Water Research,2021,203:117458. doi: 10.1016/j.watres.2021.117458
|
[62] |
WANG S X, CHEN Z, WANG Z R, et al. Enhanced degradation of triclosan using UV-Fe2+synergistic activation of peracetic acid[J]. Environmental Science:Water Research & Technology,2021,7(3):630-637.
|
[63] |
WANG L Q, YE J Y, ZHANG J Y, et al. Removal of sulfamethazine using peracetic acid activated by Fe0 and UV: efficiency and mechanism study[J]. Journal of Environmental Chemical Engineering,2021,9(6):106358. doi: 10.1016/j.jece.2021.106358
|
[64] |
LEVITT J S, N’GUESSAN A L, RAPP K L, et al. Remediation of α-methylnaphthalene-contaminated sediments using peroxy acid[J]. Water Research,2003,37(12):3016-3022. doi: 10.1016/S0043-1354(03)00116-7
|
[65] |
N'GUESSAN A L, LEVITT J S, NYMAN M C. Remediation of benzo(a)pyrene in contaminated sediments using peroxy-acid[J]. Chemosphere,2004,55(10):1413-1420. doi: 10.1016/j.chemosphere.2003.11.026
|
[66] |
SCOTT ALDERMAN N, N’GUESSAN A L, NYMAN M C. Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process[J]. Journal of Hazardous Materials,2007,146(3):652-660. doi: 10.1016/j.jhazmat.2007.04.068
|
[67] |
N'GUESSAN A L, CARIGNAN T, NYMAN M C. Optimization of the peroxy acid treatment of α-methylnaphthalene and benzo[a]pyrene in sandy and silty-clay sediments[J]. Environmental Science & Technology,2004,38(5):1554-1560.
|
[68] |
LIN J B, HU Y Y, XIAO J Y, et al. Enhanced diclofenac elimination in Fe(Ⅱ)/peracetic acid process by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with ABTS as electron shuttle[J]. Chemical Engineering Journal,2021,420:129692. ⊗ doi: 10.1016/j.cej.2021.129692
|