Volume 13 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
TIAN Z Y,ZHENG Q,DU X L,et al.Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore[J].Journal of Environmental Engineering Technology,2023,13(6):2143-2153 doi: 10.12153/j.issn.1674-991X.20230058
Citation: TIAN Z Y,ZHENG Q,DU X L,et al.Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore[J].Journal of Environmental Engineering Technology,2023,13(6):2143-2153 doi: 10.12153/j.issn.1674-991X.20230058

Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore

doi: 10.12153/j.issn.1674-991X.20230058
  • Received Date: 2023-01-29
  • Accepted Date: 2023-07-04
  • Rev Recd Date: 2023-07-04
  • Available Online: 2023-11-24
  • In order to develop an efficient and inexpensive material for As(Ⅲ) removal from water, natural ferromanganese ore (NFM) was used as adsorbent. Kinetic, thermodynamic, isothermal adsorption and adsorption/desorption experiments were conducted to evaluate the adsorption performance of As(Ⅲ). The mechanism was analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and the adsorption characteristics were compared with those of iron-manganese binary oxide (FMO), birnessite (Bir), and goethite (Goe). The results showed that NFM was mainly composed of manganese oxide and iron oxide, with a Fe-Mn molar ratio of 6∶1, the specific surface area of 280.4 m2/g, and a saturation adsorption capacity of 48.3 mg/g for As(Ⅲ). The Freundlich model and the pseudo-second order kinetic model could better fit the adsorption process of NFM. XPS and other characterization analyses indicated that the synergistic effect of adsorption and oxidation of NFM was the key factor for As(Ⅲ) removal. Among them, manganese oxides exhibited excellent oxidation of As(Ⅲ), while iron oxides had strong adsorption.

     

  • loading
  • [1]
    NORDSTROM D K. Worldwide occurrences of arsenic in ground water[J]. Science,2002,296:2143-2145. doi: 10.1126/science.1072375
    [2]
    JOMOVA K, JENISOVA Z, FESZTEROVA M, et al. Arsenic: toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology,2011,31(2):95-107.
    [3]
    GALAL G H, OZOLINS G. WHO guidelines for drinking-water quality[J]. Water Supply,1993,11(3):1-16.
    [4]
    SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
    [5]
    MENG X, JING C, KORFIATIS G P. A review of redox transformation of arsenic in aquatic environments[J]. ACS Symposium Series,2003,835:70-83.
    [6]
    张元元, 郭少娟, 王菲菲,等.TCDD和汞, 镉, 铅, 砷联合毒性效应及机理研究进展[J]. 环境工程技术学报,2021,11(2):332-342. doi: 10.12153/j.issn.1674-991X.20200217

    ZHANG Y Y, GUO S J, WANG F F, et al. Research progress on joint toxic effects and mechanisms of the mixture of TCDD and mercury, cadmium, lead, arsenic[J]. Journal of Environmental Engineering Technology,2021,11(2):332-342. doi: 10.12153/j.issn.1674-991X.20200217
    [7]
    LIANG M, GUO H, XIU W. Mechanisms of arsenite oxidation and arsenate adsorption by a poorly crystalline manganese oxide in the presence of low molecular weight organic acids[C]//E3S Web of Conferences. France: EDP Sciences, 2019: 04009.
    [8]
    LIANG M, GUO H, XIU W. Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA[J]. Environmental Science and Pollution Research,2020,27(35):43769-43785. doi: 10.1007/s11356-020-10292-3
    [9]
    HOU J, TAN X, XIANG Y, et al. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization[J]. Environmental Pollution,2022,314:120268. doi: 10.1016/j.envpol.2022.120268
    [10]
    CUONG D V, WU P C, CHEN L I, et al. Active MnO2/biochar composite for efficient As(Ⅲ) removal: insight into the mechanisms of redox transformation and adsorption[J]. Water Research,2021,188:116495. doi: 10.1016/j.watres.2020.116495
    [11]
    谷倩, 张琢, 张丽,等.砷污染场地土壤的稳定化技术工程应用研究[J]. 环境工程技术学报,2021,11(4):734-739. doi: 10.12153/j.issn.1674-991X.20200203

    GU Q, ZHANG Z, ZHANG L, et al. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology,2021,11(4):734-739. doi: 10.12153/j.issn.1674-991X.20200203
    [12]
    SU W, XIAO L. Manganese-doped ferrihydrite/cellulose/polyvinyl alcohol composite membrane: easily recyclable adsorbent for simultaneous removal of arsenic and cadmium from soil[J]. Science of the Total Environment,2022,815:152748. doi: 10.1016/j.scitotenv.2021.152748
    [13]
    石乐琪, 郭莉, 吕晨阳等.地下水脱砷技术的研究现状及发展趋势[J]. 环境工程技术学报,2022,12(5):1548-1554. doi: 10.12153/j.issn.1674-991X.20210284

    SHI L Q, GUO L, LU C Y, et al. Research status and development trend of the technology for arsenic removal from groundwater[J]. Journal of Environmental Engineering Technology,2022,12(5):1548-1554. doi: 10.12153/j.issn.1674-991X.20210284
    [14]
    YIN C, LI S, LIU L, et al. Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water[J]. Journal of Molecular Liquids,2022,346:117101. doi: 10.1016/j.molliq.2021.117101
    [15]
    ZHENG Q, HOU J, HARTLEY W, et al. As(Ⅲ) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal[J]. Chemical Engineering Journal,2020,389:124470. doi: 10.1016/j.cej.2020.124470
    [16]
    LIN Y, JIN X, KHAN N I, et al. Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic(Ⅴ) in mine wastewater[J]. Journal of Environmental Management,2022,301:113838. doi: 10.1016/j.jenvman.2021.113838
    [17]
    BAI Y, YANG T, LIANG J, et al. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J]. Water Research,2016,98:119-127. doi: 10.1016/j.watres.2016.03.068
    [18]
    CHEN D, LI D, XIAO Z, et al. Removal of lead ions by two Fe-Mn oxide substrate adsorbents[J]. Science of the Total Environment,2021,773:145670. doi: 10.1016/j.scitotenv.2021.145670
    [19]
    PARSONS J G, LOPEZ M L, PERALTA J R, et al. Determination of arsenic(Ⅲ) and arsenic(Ⅴ) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents[J]. Microchemical Journal,2009,91(1):100-106. doi: 10.1016/j.microc.2008.08.012
    [20]
    ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(Ⅲ) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption[J]. Environmental Science and Technology,2007,41(13):4613-4619. doi: 10.1021/es063010u
    [21]
    MCKENZIE R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese[J]. Mineralogical Magazine,1971,38:493-502. doi: 10.1180/minmag.1971.038.296.12
    [22]
    ATKINSON R J, POSNER A M, QUIRK J P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface[J]. Journal of Physical Chemistry,1967,71(3):550-558. doi: 10.1021/j100862a014
    [23]
    WANG J, GUO X. Adsorption isotherm models: classification, physical meaning, application and solving method[J]. Chemosphere,2020,258:127279. doi: 10.1016/j.chemosphere.2020.127279
    [24]
    FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal,2010,156(1):2-10. doi: 10.1016/j.cej.2009.09.013
    [25]
    QI J, ZHANG G, LI H. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead[J]. Bioresource Technology,2015,193:243-249. doi: 10.1016/j.biortech.2015.06.102
    [26]
    CAI G, TIAN Y, LI D, et al. Self-enhanced and efficient removal of As(Ⅲ) from water using Fe-Cu-Mn composite oxide under visible-light irradiation: synergistic oxidation and mechanisms[J]. Journal of Hazardous Materials,2022,422:126908. doi: 10.1016/j.jhazmat.2021.126908
    [27]
    LOU Z, CAO Z, XU J, et al. Enhanced removal of As(Ⅲ)/(Ⅴ) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids[J]. Chemical Engineering Journal,2017,322:710-721. doi: 10.1016/j.cej.2017.04.079
    [28]
    ALLARD S, GUTIERREZ L, FONTAINE C, et al. Organic matter interactions with natural manganese oxide and synthetic birnessite[J]. Science of the Total Environment,2017,583:487-495. doi: 10.1016/j.scitotenv.2017.01.120
    [29]
    CHENG Z, FU F, DIONYSIOU D D, et al. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(Ⅲ) by mesoporous Fe/Al bimetallic particles[J]. Water Research,2016,96:22-31. doi: 10.1016/j.watres.2016.03.020
    [30]
    BAI Y, TANG X, SUN L, et al. Application of iron-based materials for removal of antimony and arsenic from water: sorption properties and mechanism insights[J]. Chemical Engineering Journal,2021,431:134143.
    [31]
    ZHENG Q, TU S, HOU J, et al. Insights into the underlying mechanisms of stability working for As(Ⅲ) removal by Fe-Mn binary oxide as a highly efficient adsorbent[J]. Water Research,2021,203:117558. doi: 10.1016/j.watres.2021.117558
    [32]
    YIN H, LIU F, FENG X, et al. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(Ⅲ)[J]. Journal of Hazardous Materials,2011,196:318-326. doi: 10.1016/j.jhazmat.2011.09.027
    [33]
    蔡金水, 康得军, 杨天学,等.铁改性杭锦土吸附剂对水中砷的去除研究[J]. 环境科学研究,2021,34(2):346-355.

    CAI J S, KANG D J, YANG T X et al. Removal of arsenic from water by iron modified Hangjin clay adsorbent[J]. Research of Environmental Sciences,2021,34(2):346-355.
    [34]
    JOSHI T P, ZHANG G, JEFFERSON W A, et al. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism[J]. Chemical Engineering Journal,2017,309:577-587. doi: 10.1016/j.cej.2016.10.084
    [35]
    YU X, WEI Y, LIU C, et al. Ultrafast and deep removal of arsenic in high-concentration wastewater: a superior bulk adsorbent of porous Fe2O3 nanocubes-impregnated graphene aerogel[J]. Chemosphere,2019,222:258-266. doi: 10.1016/j.chemosphere.2019.01.130
    [36]
    ZHANG G, XU X, JI Q, et al. Porous nanobimetallic Fe-Mn cubes with high valent Mn and highly efficient removal of arsenic(Ⅲ)[J]. ACS Applied Materials and Interfaces,2017,9(17):14868-14877. doi: 10.1021/acsami.7b02127
    [37]
    SHUMLAS S L, SINGIREDDY S, THENUWARA A C, et al. Oxidation of arsenite to arsenate on birnessite in the presence of light[J]. Geochemical Transactions,2016,17(1):1-10. doi: 10.1186/s12932-016-0033-9
    [38]
    JAISWAL A, BANERJEE S, MANI R, et al. Synthesis, characterization and application of goethite mineral as an adsorbent[J]. Journal of Environmental Chemical Engineering,2013,1(3):281-289. doi: 10.1016/j.jece.2013.05.007
    [39]
    PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream[J]. Water Research,2016,106:295-303. doi: 10.1016/j.watres.2016.10.006
    [40]
    XIONG Y, TONG Q, SHAN W, et al. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon[J]. Applied Surface Science,2017,416:618-627. doi: 10.1016/j.apsusc.2017.04.145
    [41]
    许江城, 康得军, 赵颖,等.高效除砷分子筛新型材料制备及其吸附特性研究[J]. 环境科学研究,2020,33(9):2191-2201.

    XU J C, KANG D J, ZHAO Y, et al. Preparation and adsorption characteristics of novel molecular sieve for high sufficiency arsenic removal[J]. Research of Environmental Sciences,2020,33(9):2191-2201.
    [42]
    HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J]. Chemosphere,2017,181:328-336. doi: 10.1016/j.chemosphere.2017.04.049
    [43]
    XU W H, WANG L, WANG J, et al. Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water[J]. CrystEngComm,2013,15(39):7895-7903. doi: 10.1039/c3ce40944a
    [44]
    ZHU M, PAUL K W, KUBICKI J D, et al. Quantum chemical study of arsenic(Ⅲ, Ⅴ) adsorption on Mn-oxides: Implications for arsenic(Ⅲ) oxidation[J]. Environmental Science and Technology,2009,43(17):6655-6661. doi: 10.1021/es900537e
    [45]
    MCCANN C M, PEACOCK C L, HUDSON-EDWARDS K A, et al. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil[J]. Journal of Hazardous Materials,2018,342:724-731. doi: 10.1016/j.jhazmat.2017.08.066
    [46]
    ZHANG G, LIU F, LIU H, et al. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation[J]. Environmental Science and Technology,2014,48(17):10316-10322. ⊗ doi: 10.1021/es501527c
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article Views(243) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return