Volume 13 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
LI G W,ZHAO C,CUI J L,et al.Research progress of slurry bioreactor bioremediation of refractory organic matter contaminated soil[J].Journal of Environmental Engineering Technology,2023,13(5):1694-1700 doi: 10.12153/j.issn.1674-991X.20230161
Citation: LI G W,ZHAO C,CUI J L,et al.Research progress of slurry bioreactor bioremediation of refractory organic matter contaminated soil[J].Journal of Environmental Engineering Technology,2023,13(5):1694-1700 doi: 10.12153/j.issn.1674-991X.20230161

Research progress of slurry bioreactor bioremediation of refractory organic matter contaminated soil

doi: 10.12153/j.issn.1674-991X.20230161
  • Received Date: 2023-02-27
  • Accepted Date: 2023-07-26
  • Rev Recd Date: 2023-04-14
  • Slurry bioreactors are widely used in bioremediation of soils polluted by refractory organic matter because of their fast mass transfer, controllable conditions and high remediation efficiency. The main removal mechanisms of solid-liquid mass transfer, gas-liquid mass transfer and biodegradation involved in the bioremediation of refractory organic matter in slurry bioreactor were reviewed, and the importance of three removal mechanisms, namely solid-liquid mass transfer, gas-liquid mass transfer and biodegradation, was summarized. The research progress of bioreactor modeling at home and abroad was summarized, and the basic models of solid-liquid mass transfer, gas-liquid mass transfer and biodegradation processes were formed. The important parameters of the slurry bioreactor were determined, including physical parameters, biological parameters and operating parameters, and the influence mechanism of various parameters and their suitable range were summarized. Finally, the future research directions of slurry bioreactor to remove refractory organic matter were prospected, including mechanism research, microbial agents, and intelligent application equipment.

     

  • loading
  • [1]
    全国土壤污染状况调查公报[EB/OL]. [2014-04-17]. http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm.
    [2]
    夏超波.土壤污染现状调查与环境保护[J]. 皮革制作与环保科技,2022(21):29-31. doi: 10.20025/j.cnki.CN10-1679.2022-21-10

    XIA C B. Soil pollution investigation and environmental protection[J]. Leather Manufacture and Environmental Technology,2022(21):29-31. doi: 10.20025/j.cnki.CN10-1679.2022-21-10
    [3]
    王庆宏, 郑逸, 李倩玮, 等.污染土壤生物联合修复机制研究进展[J]. 环境科学研究,2022,35(1):246-256. doi: 10.13198/j.issn.1001-6929.2021.10.16

    WANG Q H, ZHENG Y, LI Q W, et al. Overview of combined bioremediation mechanism of contaminated soil[J]. Research of Environmental Sciences,2022,35(1):246-256. doi: 10.13198/j.issn.1001-6929.2021.10.16
    [4]
    孙兴凯, 黄海, 王海东, 等.大型污染场地修复过程中的问题探讨与工程实践[J]. 环境工程技术学报,2020,10(5):883-890. doi: 10.12153/j.issn.1674-991X.20190216

    SUN X K, HUANG H, WANG H D, et al. Discussion of problems in the process of large-scale contaminate sites remediation and project practice[J]. Journal of Environmental Engineering Technology,2020,10(5):883-890. doi: 10.12153/j.issn.1674-991X.20190216
    [5]
    杨勇, 张蒋维, 陈恺, 等.化学氧化法治理焦化厂PAHs污染土壤[J]. 环境工程学报,2016,10(1):427-431. doi: 10.12030/j.cjee.20160171

    YANG Y, ZHANG J W, CHEN K, et al. Chemical oxidation of coking plant soils contaminated with polycyclic aromatic hydrocarbons[J]. Chinese Journal of Environmental Engineering,2016,10(1):427-431. doi: 10.12030/j.cjee.20160171
    [6]
    PINO-HERRERA D O, PECHAUD Y, HUGUENOT D, et al. Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: an overview[J]. Journal of Hazardous Materials,2017,339:427-449. doi: 10.1016/j.jhazmat.2017.06.013
    [7]
    PLANGKLANG P, REUNGSANG A. Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor[J]. Process Biochemistry,2010,45(2):230-238. doi: 10.1016/j.procbio.2009.09.013
    [8]
    QUINTERO J C, MOREIRA M T, LEMA J M, et al. An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry[J]. Chemosphere,2006,63(6):1005-1013. doi: 10.1016/j.chemosphere.2005.08.043
    [9]
    吴蔓莉, 李可欣, 侯爽爽, 等.贫养分低有机质黄绵土中石油烃的生物去除特性及菌群结构变化[J]. 环境科学研究,2021,34(8):1961-1970. doi: 10.13198/j.issn.1001-6929.2021.04.13

    WU M L, LI K X, HOU S S, et al. Petroleum hydrocarbon degradation characteristics and microbial community shift by bioremediation in oligotrophic and low organic matter soil[J]. Research of Environmental Sciences,2021,34(8):1961-1970. doi: 10.13198/j.issn.1001-6929.2021.04.13
    [10]
    NANO G, BORRONI A, ROTA R. Combined slurry and solid-phase bioremediation of diesel contaminated soils[J]. Journal of Hazardous Materials,2003,100(1/2/3):79-94.
    [11]
    ROBLES-GONZÁLEZ I V, FAVA F, POGGI-VARALDO H. A review on slurry bioreactors for bioremediation of soils and sediments[J]. Microbial Cell Factories,2008,7:5. doi: 10.1186/1475-2859-7-5
    [12]
    VENKATA MOHAN S, PURUSHOTHAM REDDY B, SARMA P N. Ex situ slurry phase bioremediation of chrysene contaminated soil with the function of metabolic function: process evaluation by data enveloping analysis (DEA) and Taguchi design of experimental methodology (DOE)[J]. Bioresource Technology,2009,100(1):164-172. doi: 10.1016/j.biortech.2008.06.020
    [13]
    MOSCA ANGELUCCI D, TOMEI M C. Ex situ bioremediation of chlorophenol contaminated soil: comparison of slurry and solid-phase bioreactors with the two-step polymer extraction-bioregeneration process[J]. Journal of Chemical Technology & Biotechnology,2016,91(6):1577-1584.
    [14]
    TYAGI M, Da FONSECA M M R, de CARVALHO C C C R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes[J]. Biodegradation,2011,22(2):231-241. doi: 10.1007/s10532-010-9394-4
    [15]
    WANG S Y, KUO Y C, HONG A, et al. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system[J]. Chemosphere,2016,164:558-567. doi: 10.1016/j.chemosphere.2016.08.128
    [16]
    CASTALDI F J. Tank-based bioremediation of petroleum waste sludges[J]. Environmental Progress,2003,22(1):25-36. doi: 10.1002/ep.670220114
    [17]
    ANTHES C, SCHUTTER O D. The Food and Agriculture Organization of the United Nations[R]. New York: United Nations, 2018.
    [18]
    LÜTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review[J]. European Journal of Soil Science,2006,57(4):426-445. doi: 10.1111/j.1365-2389.2006.00809.x
    [19]
    RAE J, PARKER A. Environmental interactions of clays[M]//Environmental Interactions of Clays. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998: 1-6.
    [20]
    AYLMORE L A G, QUIRK J P. The micropore size distributions of clay mineral systems[J]. Journal of Soil Science,1967,18(1):1-17. doi: 10.1111/j.1365-2389.1967.tb01481.x
    [21]
    MÜLLER S, TOTSCHE K U, KÖGEL-KNABNER I. Sorption of polycyclic aromatic hydrocarbons to mineral surfaces[J]. European Journal of Soil Science,2007,58(4):918-931. doi: 10.1111/j.1365-2389.2007.00930.x
    [22]
    CUI X Y, HUNTER W, YANG Y, et al. Biodegradation of pyrene in sand, silt and clay fractions of sediment[J]. Biodegradation,2011,22(2):297-307. doi: 10.1007/s10532-010-9399-z
    [23]
    OEN A M P, CORNELISSEN G, BREEDVELD G D. Relation between PAH and black carbon contents in size fractions of Norwegian Harbor sediments[J]. Environmental Pollution,2006,141(2):370-380. doi: 10.1016/j.envpol.2005.08.033
    [24]
    綦远才, 周翠, 何欣芮, 等. 两种外源有机酸对土壤Cd形态及秋华柳Cd积累的影响[J]. 环境科学研究, 2021, 34(9): 2220-2227. doi: 10.13198/j.issn.1001-6929.2021.04.21

    QI Y C, ZHOU C, HE X R, et al. Effects of exogenous organic acids on Cd forms in soil and Cd accumulation in Salix variegate franch[J]. Research of Environmental Sciences, 2021, 34(9): 2220-2227. doi: 10.13198/j.issn.1001-6929.2021.04.21
    [25]
    WERSHAW R L. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems[J]. Journal of Contaminant Hydrology,1986,1(1/2):29-45.
    [26]
    TRELLU C, MILTNER A, GALLO R, et al. Characteristics of PAH tar oil contaminated soils: black particles, resins and implications for treatment strategies[J]. Journal of Hazardous Materials,2017,327:206-215. doi: 10.1016/j.jhazmat.2016.12.062
    [27]
    CAO F S, BOURVEN I, LENS P N L, et al. Hydrophobic features of EPS extracted from anaerobic granular sludge: an investigation based on DAX-8 resin fractionation and size exclusion chromatography[J]. Applied Microbiology and Biotechnology,2017,101(8):3427-3438. doi: 10.1007/s00253-016-8053-z
    [28]
    ADAV S S, LEE D J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure[J]. Journal of Hazardous Materials,2008,154(1/2/3):1120-1126.
    [29]
    展海银, 周启星.环境中四环素类抗生素污染处理技术研究进展[J]. 环境工程技术学报,2021,11(3):571-581. doi: 10.12153/j.issn.1674-991X.20200154

    ZHAN H Y, ZHOU Q X. Research progress on treatment technology of tetracycline antibiotics pollution in the environment[J]. Journal of Environmental Engineering Technology,2021,11(3):571-581. doi: 10.12153/j.issn.1674-991X.20200154
    [30]
    AKSU Z. Application of biosorption for the removal of organic pollutants: a review[J]. Process Biochemistry,2005,40(3/4):997-1026.
    [31]
    VIJAYARAGHAVAN K, YUN Y S. Bacterial biosorbents and biosorption[J]. Biotechnology Advances,2008,26(3):266-291. doi: 10.1016/j.biotechadv.2008.02.002
    [32]
    GARCIA-OCHOA F, GOMEZ E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[J]. Biotechnology Advances,2009,27(2):153-176. doi: 10.1016/j.biotechadv.2008.10.006
    [33]
    SAPONARO S, BONOMO L, PETRUZZELLI G, et al. Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil[J]. Water, Air, and Soil Pollution,2002,135(1):219-236.
    [34]
    MOZO I, LESAGE G, YIN J, et al. Dynamic modeling of biodegradation and volatilization of hazardous aromatic substances in aerobic bioreactor[J]. Water Research,2012,46(16):5327-5342. doi: 10.1016/j.watres.2012.07.014
    [35]
    COLLINA E, BESTETTI G, Di GENNARO P, et al. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor[J]. Environment International,2005,31(2):167-171. doi: 10.1016/j.envint.2004.09.011
    [36]
    HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials,2009,169(1/2/3):1-15.
    [37]
    McGENITY T J. Hydrocarbon biodegradation in intertidal wetland sediments[J]. Current Opinion in Biotechnology,2014,27:46-54. doi: 10.1016/j.copbio.2013.10.010
    [38]
    SPAIN J. Biodegradation of nitroaromatic compounds[R]. Cham: Springer, 2013.
    [39]
    HUSSAIN S, ARSHAD M, SPRINGAEL D, et al. Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review[J]. Critical Reviews in Environmental Science and Technology,2015,45(18):1947-1998. doi: 10.1080/10643389.2014.1001141
    [40]
    TIWARI M K, GUHA S. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments[J]. Water Research,2014,51:73-85. doi: 10.1016/j.watres.2013.12.014
    [41]
    BALSEIRO-ROMERO M, MONTERROSO C, KIDD P S, et al. Modelling the ex situ bioremediation of diesel-contaminated soil in a slurry bioreactor using a hydrocarbon-degrading inoculant[J]. Journal of Environmental Management,2019,246:840-848.
    [42]
    KARGI F. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics[J]. Letters in Applied Microbiology,2009,48(4):398-401. doi: 10.1111/j.1472-765X.2008.02537.x
    [43]
    SKRDLA P J. A simple model for complex dissolution kinetics: a case study of norfloxacin[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,45(2):251-256. doi: 10.1016/j.jpba.2007.06.012
    [44]
    曹斐姝, 陈建平, 谢冬燕, 等.泥浆生物反应器在土壤修复中的应用[J]. 环境工程,2022,40(4):174-181. doi: 10.13205/j.hjgc.202204025

    CAO F S, CHEN J P, XIE D Y, et al. Application of slurry bioreactor in soil remediation[J]. Environmental Engineering,2022,40(4):174-181. doi: 10.13205/j.hjgc.202204025
    [45]
    ROBLES-GONZÁLEZ I, RÍOS-LEAL E, FERRERA-CERRATO R, et al. Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2, 4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron acceptor and supplementation with an organic carbon source[J]. Process Biochemistry,2006,41(9):1951-1960. □ doi: 10.1016/j.procbio.2006.04.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article Views(482) PDF Downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return