Citation: | CHEN T,WANG Z,LU M Y,et al.Isolation of Exiguobacterium sp. H-1 from the sulfamethazine wastewater treatment system and its environmental adaptation characteristics[J].Journal of Environmental Engineering Technology,2024,14(1):258-267 doi: 10.12153/j.issn.1674-991X.20230281 |
Sulfamethazine (SMZ) is a broad-spectrum antibiotic that is difficult to degrade, and its widespread presence poses a serious threat to the aquatic environment. Microorganisms are the main drivers of antibiotic degradation and transformation in the environment, but microbial resources for efficient degradation of SMZ are limited. Therefore, a strain of SMZ-degrading bacteria H-1 was isolated and screened from the activated sludge of SMZ wastewater treatment system by the pure culture technique. The strain H-1 was classified as the genus of Exiguobacterium sp. based on its morphological observation, physiological and biochemical characteristics, and 16S rRNA gene sequence analysis. The effects of initial SMZ concentration, inoculum, pH and temperature on the degradation of SMZ by strain H-1 were investigated by a single-factor test, and it indicated that the inoculum, pH and temperature affected greater on the degradation of SMZ by strain H-1. The optimal conditions for the degradation of SMZ by strain Exiguobacterium sp. H-1 were further optimized by response surface methodology: pH 7.21, temperature 28.86 ℃, inoculum level 4.40%, and its removal efficiency of 5 mg/L SMZ was 10.54%. It is found for the first time that Exiguobacterium sp. H-1 has the ability to degrade SMZ, and it is able to remove SMZ from SO2 first to produce pyrimidine and aniline rings, which are coupled to generate N-4,6-dimethylpyrimidin-2-yl)-1,4-diphenylamine, and then the deamination reaction proceeds to produce 2-phenyl-4,6-dimethylpyrimidine, which is subsequently demethylated to produce product 6 (m/z=159.97). In addition, strain H-1 also shows a strong salt tolerance within a wide range of 0-10% NaCl, providing a resource of salt-tolerant microbial strains for the bioremediation of SMZ-polluted waters.
[1] |
车琦, 王继华, 崔红, 等. 一株磺胺二甲嘧啶抗性菌的筛选及抗性机制研究[J]. 环境科学研究,2021,34(10):2405-2411. doi: 10.13198/j.issn.1001-6929.2021.06.13
CHE Q, WANG J H, CUI H, et al. Screening and resistance mechanism of sulfamethazine-resistant strain[J]. Research of Environmental Sciences,2021,34(10):2405-2411. doi: 10.13198/j.issn.1001-6929.2021.06.13
|
[2] |
孙爱荣. 噁喹酸、环丙沙星和磺胺二甲嘧啶在大菱鲆体内的药代动力学及其代谢酶基因CYP3A的克隆与表达分析[D]. 上海: 上海海洋大学, 2012.
|
[3] |
BELAKHOV V V. Heptaene macrolide antibiotic perimycin: preparation, physicochemical properties, structure, biological activity, and application in agriculture as an eco-friendly fungicide (a review)[J]. Russian Journal of General Chemistry,2021,91(13):2943-2952. doi: 10.1134/S1070363221130235
|
[4] |
BELAKHOV V V. Ecological aspects of application of tetraene macrolide antibiotic tetramycin in agriculture and food industry : a review[J]. Russian Journal of General Chemistry, 2021, 91(13): 2858-2880.
|
[5] |
许振山, 张伟丽, 孙晓彤, 等. 磺胺二甲嘧啶在黄河鲤体内的代谢动力学研究[J]. 河南农业科学,2021,50(9):149-156. doi: 10.15933/j.cnki.1004-3268.2021.09.018
XU Z S, ZHANG W L, SUN X T, et al. Pharmacokinetics study of sulfamethazine in Cyprinus carpio[J]. Journal of Henan Agricultural Sciences,2021,50(9):149-156. doi: 10.15933/j.cnki.1004-3268.2021.09.018
|
[6] |
逯延军, 董艳慧, 赵平歌, 等. 复合型纳米铁还原法处理抗生素废水研究[J]. 应用化工,2021,50(7):1847-1849. doi: 10.3969/j.issn.1671-3206.2021.07.023
|
[7] |
徐森, 胡晓东, 郑秋辉. 生物组合工艺处理抗生素废水现状及展望[J]. 工业水处理,2011,31(2):5-8. doi: 10.3969/j.issn.1005-829X.2011.02.002
XU S, HU X D, ZHENG Q H. Present situation and forecast of the treatment of antibiotic wastewater by biological combined processes[J]. Industrial Water Treatment,2011,31(2):5-8. doi: 10.3969/j.issn.1005-829X.2011.02.002
|
[8] |
赵慈, 张茹, 李思琦,等. 一株金霉素降解新菌株的分离鉴定及降解条件优化[J]. 环境工程技术学报,2022,12(6):2082-2088. doi: 10.12153/j.issn.1674-991X.20210430
ZHAO C, ZHANG R, LI S Q, et al. Isolation, identification and degradation conditions optimization of a new bacterial strain degrading chlortetracycline[J]. Journal of Environmental Engineering Technology,2022,12(6):2082-2088. doi: 10.12153/j.issn.1674-991X.20210430
|
[9] |
张珈瑜, 彭星星, 贾晓珊. 磺胺二甲基嘧啶(SM2)高效降解菌J2的分离筛选及降解特性研究[J]. 环境科学学报,2019,39(9):2919-2927. doi: 10.13671/j.hjkxxb.2019.0096
ZHANG J Y, PENG X X, JIA X S. Isolation and characterization of highly efficient sulfamethazine-degrading bacterium strain J2[J]. Acta Scientiae Circumstantiae,2019,39(9):2919-2927. doi: 10.13671/j.hjkxxb.2019.0096
|
[10] |
车琦. 地下水中磺胺类降解菌的筛选、鉴定及代谢途径的研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
|
[11] |
PAN L, TANG X, LI C, et al. Biodegradation of sulfamethazine by an isolated thermophile– Geobacillus sp. S-07[J]. World Journal of Microbiology and Biotechnology,2017,33:1-8. doi: 10.1007/s11274-016-2144-y
|
[12] |
HUANG M H, TIAN S X, CHEN D H, et al. Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3[J]. Journal of Environmental Sciences,2012,24(09):1594-1599. doi: 10.1016/S1001-0742(11)60973-X
|
[13] |
刘文举, 姚甜甜, 申艳敏, 等. 磺胺二甲嘧啶-对羟基苯甲酸共晶在乙腈溶剂中的三元相图测定[J]. 精细化工,2020,37(9):1870-1876. doi: 10.13550/j.jxhg.20200166
|
[14] |
张淑红, 杜林南, 刘婷婷, 等. 河南省四城市饮用水中细菌对四环素和磺胺二甲嘧啶的耐药性[J]. 环境与健康杂志,2020,37(4):326-329. doi: 10.16241/j.cnki.1001-5914.2020.04.011
|
[15] |
YU B, ZHOU Y, HUANG Z W, et al. Effect of hydraulic retention time on pollutant removal performance of biological contact oxidation process treating hospital wastewater[J]. Applied Mechanics and Materials,2014,507:725-729. doi: 10.4028/www.scientific.net/AMM.507.725
|
[16] |
SHI Y J, HUANG C K, GAMAL El-D M, et al. Optimization of moving bed biofilm reactors for oil sands process-affected water treatment: the effect of HRT and ammonia concentrations[J]. Science of the Total Environment,2017,598:690-696. doi: 10.1016/j.scitotenv.2017.04.144
|
[17] |
YANG X, CHEN L, WANG C Q. Advance in application of 16S rRNA gene in bacteriology[J]. Journal of Northwest A & F University:Natural Science Edition,2008,36(2):55-60.
|
[18] |
王丽娟, 钱子雯, 沈海波, 等. 一株耐盐菌的分离及其降解特性[J]. 化工进展,2017,36(3):1047-1051. doi: 10.16085/j.issn.1000-6613.2017.03.037
|
[19] |
付袁芝. 磺胺二甲基嘧啶降解菌的筛选及降解特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[20] |
KLEIN E Y, BOECKELTP V, MARTINEZ E M, et al. Global increase and geographic convergencein antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences,2018,115:3463-3470.
|
[21] |
GARCLA M J, GARCFA G, DAY J W, et al. A review of emerging organic contaminants (EOCs), antibiotie resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: increasing removal with wetlands and reducing environmental impacts[J]. Bioresource Technology, 2020, 307, 123228.
|
[22] |
陈智明, 刘国光, 马京帅, 等. Fe2+催化过碳酸钠降解水体中的磺胺二甲嘧啶[J]. 环境科学学报,2017,37(1):234-242.
CHEN Z M, LIU G G, MA J S, et al. Degradation of sulfamethazine with Fe2+-catalyzed sodium percarbonate system[J]. Acta Sctentiae Circumstantiae,2017,37(1):234-242.
|
[23] |
杨振兴, 李烨莹, 叶芳芳, 等. 抗生素废水处理技术研究进展[J]. 现代化工,2021,41(1):57-61. doi: 10.16606/j.cnki.issn0253-4320.2021.01.012
|
[24] |
YANG C W, HSIAO W C, CHANG B V. Biodegradation of sulfonamide antibiotics in sludge[J]. Chemosphere,2016,150:559-565. doi: 10.1016/j.chemosphere.2016.02.064
|
[25] |
冒学宇, 李勇, 吴丛, 等. 石油烃降解菌的筛选及其降解特性研究[J]. 环境工程技术学报,2022,2(3):886-892. doi: 10.12153/j.issn.1674-991X.20210203
MAO X Y, LI Y, WU C, et al. Research on the screening of petroleum hydrocarbon degrading bacteria and their degradation characteristics[J]. Journal of Environmental Engineering Technology,2022,2(3):886-892. doi: 10.12153/j.issn.1674-991X.20210203
|
[26] |
王强锋, 朱彭玲, 夏中梅, 等. 三种农用抗生素降解真菌的筛选及其降解性能[J]. 农业资源与环境学报, 2018, 35(6): 533-539.
WANG Q F, ZHU P L, XIA Z M, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungi[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 533-539.
|
[27] |
MAO F, LIU X, WU K, et al. Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4[J]. Biodegradation,2018,29:129-140. doi: 10.1007/s10532-017-9818-5
|
[28] |
李晨钰. 磺胺二甲基嘧啶高效降解菌的筛选及降解机理研究[D]. 泰安: 山东农业大学, 2021.
|
[29] |
CAO L, ZHANG J, ZHAO R, et al. Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01[J]. Environment International,2019,131:104961. doi: 10.1016/j.envint.2019.104961
|
[30] |
赵芮, 李登辉, 李学恭, 等. 微小杆菌属 ( Exiguobacterium)细菌的能量代谢途径分析[J]. 微生物学报,2023,63(6):2078-2093.
ZHAO R, LI D H, LI X G, et al. Energy metabolism pathways in Exiguobacterium[J]. Acta Microbiologica Sinica,2023,63(6):2078-2093.
|
[31] |
胡江. 阿特拉津降解菌株BTAH1的分离鉴定、降解特性及应用的研究[D]. 南京: 南京农业大学, 2004.
|
[32] |
OKEKE B C. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1[J]. Journal of Industrial Microbiology and Biotechnology,2008,35(12):1571-1579. doi: 10.1007/s10295-008-0399-5
|
[33] |
YUMOTO I, HISHINUMA-NARISAWA M, HIROTA K, et al. Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6): 2013-2017.
|
[34] |
杨锐. 磺胺二甲嘧啶降解菌的固定化及其在修复磺胺二甲嘧啶污染土壤中的应用[D]. 泰安: 山东农业大学, 2021.
|
[35] |
李鸿炫. 复苏促进因子强化多氯联苯污染土壤微生物修复机制研究[D]. 杭州: 浙江大学, 2018. ⊕
|