Citation: | WANG S,QIAO P W,DAI X L,et al.Distribution and migration characteristics of 1,2,4-trichlorobenzene pollution in a dye factory plot[J].Journal of Environmental Engineering Technology,2024,14(2):501-509 doi: 10.12153/j.issn.1674-991X.20230450 |
Taking a contaminated plot of a dye factory in Beijing as an example, statistical analysis was carried out on the concentration data of five chlorobenzene volatile organic pollutants (chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene) in soil and groundwater. 1,2,4-trichlorobenzene with high detected concentrations and exceedance multiples in soil and groundwater samples was selected, its vertical distribution characteristics in soil and horizontal distribution characteristics in groundwater were analyzed, and the solute migration law of 1,2,4-trichlorobenzene in groundwater was simulated by using MT3D in GMS software. This result indicated that the maximum detectable concentrations of the five chlorobenzene organic pollutants in soil samples all exceed the corresponding screening values, the maximum detectable concentrations of chlorobenzene and 1,2-dichlorobenzene in groundwater samples did not exceed the corresponding screening values, and the maximum detectable concentrations of 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzenene exceed the corresponding screening values. High concentration of 1,2,4-trichlorobenzene in soil was mainly concentrateded in the range of 0-10 m depth. The concentration of 1,2,4-trichlorobenzene in groundwater in the northwest was significantly higher than that in the southeast. There was a slight northward movement of the groundwater level line on the north side of the plot, and the groundwater level of each monitoring well was in a slow downward trend. 1,2,4-trichlorobenzene in the block migrated to the southern boundary of the block at 540 d, with a migration distance of 96.2 m. The research results could provide a theoretical reference for precise control and reasonable restoration of polluted plots.
[1] |
谭海剑, 黄祖照, 宋清梅, 等. 粤港澳大湾区典型城市遗留地块土壤污染特征研究[J]. 环境科学研究,2021,34(4):976-986.
TAN H J, HUANG Z Z, SONG Q M, et al. Characterization of soil contaminations in brownfield sites in a typical city in Guangdong-Hong Kong-Macao greater bay area[J]. Research of Environmental Sciences,2021,34(4):976-986.
|
[2] |
刘乐, 张国良, 王芳, 等. 氯苯类化合物污染现状及其修复技术研究进展[J]. 湖北农业科学,2022,61(5):91-97.
LIU L, ZHANG G L, WANG F, et al. Research progress on pollution status of chlorobenzene compounds and its remediation technology[J]. Hubei Agricultural Sciences,2022,61(5):91-97.
|
[3] |
任志远, 李秋爽, 高新华, 等. 氯苯类生产过程POPs污染风险点分析及环境管理建议[J]. 化工环保,2016,36(6):696-701.
REN Z Y, LI Q S, GAO X H, et al. Pollution risks analysis of POPs in chlorobenzenes production and suggestions for environment management[J]. Environmental Protection of Chemical Industry,2016,36(6):696-701.
|
[4] |
YUAN Y Q, NING X N, ZHANG Y P, et al. Chlorobenzene levels, component distribution, and ambient severity in wastewater from five textile dyeing wastewater treatment plants[J]. Ecotoxicology and Environmental Safety,2020,193:110257. doi: 10.1016/j.ecoenv.2020.110257
|
[5] |
SPIGARELLI J L, GOING J E, LI R. Hexachlorobenzene levels in multimedia environmental samples from selected chemical production plants[J]. IARC Scientific Publications,1986(77):155-60.
|
[6] |
钱翌, 孔祥文. 1, 2, 4-三氯苯环境污染修复技术研究进展[J]. 化工环保,2015,35(2):147-153.
QIAN Y, KONG X W. Research progresses in environmental remediation technologies for 1, 2, 4-trichlorobenzene pollution[J]. Environmental Protection of Chemical Industry,2015,35(2):147-153.
|
[7] |
魏泰莉. 珠江入海口水体中氯苯类化合物的污染分布及其行为模拟[D]. 广东: 中山大学, 2006.
|
[8] |
彭进进, 李琳, 郑川, 等. 某染料化工厂地块苯系物分布特征分析[J]. 环境工程,2021,39(4):187-194.
PENG J J, LI L, ZHENG C, et al. Analysis of distribution characteristics of BTEX in a dyestuff chemical site[J]. Environmental Engineering,2021,39(4):187-194.
|
[9] |
QIAO W J, LUO F, LOMHEIM L, et al. Natural attenuation and anaerobic benzene detoxification processes at a chlorobenzene-contaminated industrial site inferred from field investigations and microcosm studies[J]. Environmental Science & Technology,2018,52(1):22-31.
|
[10] |
MEIJER S N, OCKENDEN W A, SWEETMAN A, et al. Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes[J]. Environmental Science & Technology,2003,37(4):667-672.
|
[11] |
李佳斌. 北京某染料厂污染地块土壤和地下水6种氯苯类化合物的分布特征及迁移转化分析[J]. 环境工程学报,2022,16(7):2296-2307.
LI J B. Distribution, migration and transformation of six chlorobenzene compounds in soil and groundwater of a dye factory in Beijing[J]. Chinese Journal of Environmental Engineering,2022,16(7):2296-2307.
|
[12] |
马运, 黄启飞, 赵秀兰. 六氯苯在中国典型持久性有机污染物污染场地中空间分布研究[J]. 环境污染与防治,2009,31(3):32-35.
MA Y, HUANG Q F, ZHAO X L. Spatial distribution of HCB in a typical contaminated site[J]. Environmental Pollution and Control,2009,31(3):32-35.
|
[13] |
张婉莹. 基于EVS的上海某化工污染场地中1, 4-二氯苯空间分布模拟研究[J]. 环境卫生工程,2021,29(3):31-38.
ZHANG W Y. Simulation study on spatial distribution of 1, 4-dichlorobenzene in a chemical contaminated site in Shanghai based on EVS[J]. Environmental Sanitation Engineering,2021,29(3):31-38.
|
[14] |
孟宪荣, 许伟, 张建荣. 化工污染场地氯苯分布特征[J]. 土壤,2019,51(6):1144-1150.
MENG X R, XU W, ZHANG J R. Distribution characters of chlorobenzene in polluted chemical industrial site[J]. Soils,2019,51(6):1144-1150.
|
[15] |
生态环境部. 建设用地土壤污染状况调查技术导则(发布稿): HJ 25.1—2019[S/OL]
2023-06-10]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201912/W020240222658301178403.pdf.
|
[16] |
生态环境部. 建设用地土壤污染风险管控和修复监测技术导则(发布稿): HJ 25.2—2019[S/OL]. [2023-06-10]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201912/W020191224561614977338.pdf.
|
[17] |
于靖靖, 梁田, 罗会龙, 等. 近10年来我国污染场地再利用的案例分析与环境管理意义[J]. 环境科学研究,2022,35(5):1110-1119.
YU J J, LIANG T, LUO H L, et al. Case analysis and environmental management significance of contaminated site reuse in China from 2011 to 2021[J]. Research of Environmental Sciences,2022,35(5):1110-1119.
|
[18] |
环境保护部. 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 605—2011[S]. 北京: 中国环境科学出版社, 2011.
|
[19] |
张蒙蒙, 张超艳, 郭晓欣, 等. 焦化场地包气带区土壤苯的精细化风险评估[J]. 环境科学研究,2021,34(5):1223-1230.
ZHANG M M, ZHANG C Y, GUO X X, et al. Refined risk assessment of soil benzene in unsaturated zone of coking site[J]. Research of Environmental Sciences,2021,34(5):1223-1230.
|
[20] |
环境保护部. 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 639—2012[S]. 北京: 中国环境科学出版社, 2013.
|
[21] |
环境保护部. 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法: HJ 699—2014[S]. 北京: 中国环境科学出版社, 2014.
|
[22] |
王硕, 王湛, 魏文侠, 等. 某钢铁厂土壤重金属砷空间分布特征分析[J]. 环境保护科学,2019,45(3):110-114.
WANG S, WANG Z, WEI W X, et al. Analysis of spatial distribution characteristics of arsenic in soil of A steel plant[J]. Environmental Protection Science,2019,45(3):110-114.
|
[23] |
杨劲枝, 丁文萍, 张岩, 等. 基于GMS的河北文安包气带三维地层模型构建[J]. 地下水,2020,42(6):5-7.
YANG J Z, DING W P, ZHANG Y, et al. 3 D Stratum model of aeration zone in Wen'an County of Hebei Province based on GMS Software[J]. Underground Water,2020,42(6):5-7.
|
[24] |
张汝壮. 基于GMS的某非正规垃圾填埋场地下水污染的模拟研究[J]. 环境卫生工程,2020,28(3):75-79.
ZHANG R Z. Simulation study of groundwater pollution in an informal landfill based on GMS[J]. Environmental Sanitation Engineering,2020,28(3):75-79.
|
[25] |
吴鹏飞, 彭展, 陈小婷. 基于GMS的数值模拟在某化工园地下水环境影响评价中的应用[J]. 资源环境与工程,2017,31(6):728-734.
WU P F, PENG Z, CHEN X T. Based on the numerical simulation of GMS in a chemical industry garden application of water environmental impact assessment[J]. Resources Environment & Engineering,2017,31(6):728-734.
|
[26] |
李书迪, 谢湉, 张荣海, 等. 西南某退役化工厂场地地下水污染特征及污染物迁移规律分析[J]. 环境工程技术学报,2022,12(5):1555-1563.
LI S D, XIE T, ZHANG R H, et al. Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China[J]. Journal of Environmental Engineering Technology,2022,12(5):1555-1563.
|
[27] |
王硕, 魏文侠, 李佳斌, 等. 某钢铁厂土壤中多环芳烃污染评价与风险评估[J]. 环境工程技术学报,2019,9(4):447-452.
WANG S, WEI W X, LI J B, et al. Evaluation and risk assessment of polycyclic aromatic hydrocarbons in soil of a steel plant[J]. Journal of Environmental Engineering Technology,2019,9(4):447-452.
|
[28] |
罗泽娇, 李龙媛, 余江. 氯苯(CB)在粘土上的解吸特征[J]. 地球科学,2015,40(5):933-940.
LUO Z J, LI L Y, YU J. Desorption characteristics of chlorobenzene from clay[J]. Earth Science,2015,40(5):933-940.
|
[29] |
MARCO-URREA E, PÉREZ-TRUJILLO M, CAMINAL G, et al. Dechlorination of 1, 2, 3- and 1, 2, 4-trichlorobenzene by the white-rot fungus Trametes versicolor[J]. Journal of Hazardous Materials,2009,166(2/3):1141-1147.
|
[30] |
BRUNSBACH F R, REINEKE W. Degradation of chlorobenzenes in soil slurry by a specialized organism[J]. Applied Microbiology and Biotechnology,1994,42(2):415-420.
|
[31] |
卢晓华. 基于数值模拟的企业地下水重金属污染的环境影响预测评价[J]. 安全与环境工程,2014,21(1):93-97. doi: 10.3969/j.issn.1671-1556.2014.01.018
LU X H. Environmental impact prediction assessment of heavy metal pollution in groundwater based on numerical simulation[J]. Safety and Environmental Engineering,2014,21(1):93-97. doi: 10.3969/j.issn.1671-1556.2014.01.018
|
[32] |
王铭. 基于MODFLOW的废铅蓄电池对地下水污染模拟[J]. 能源与节能,2021(5):78-80.
Wang M. Simulation of groundwater pollution caused by waste lead storage battery based on MODFLOW[J]. Energy and Conservation,2021(5):78-80.
|
[33] |
邓一荣, 陆海建, 董敏刚, 等. 粤港澳大湾区典型化工场地苯系物污染特征及迁移规律[J]. 环境科学,2019,40(12):5615-5622.
DENG Y R, LU H J, DONG M G, et al. Pollution characteristics and migration of BTEX at a chemical contaminated site in the Guangdong-Hong Kong-Macao greater bay area[J]. Environmental Science,2019,40(12):5615-5622.
|
[34] |
关智程. 唐山赵各庄垃圾场渗滤液污染物在地下水中的运移规律研究[D]. 石家庄: 石家庄经济学院, 2011.
|
[35] |
李明, 张刘俊, 冯涛, 等. 污染场地地下水中砷的运移模拟研究[J]. 安全与环境工程,2022,29(2):141-150.
LI M, ZHANG L J, FENG T, et al. Simulation study on arsenic transport in groundwater of contaminated sites[J]. Safety and Environmental Engineering,2022,29(2):141-150.
|
[36] |
史鹏飞, 彭政, 马妍, 等. 污染场地修复后再利用的典型安全风险及长期监管策略研究[J]. 环境工程技术学报,2023,13(4):1625-1634.
SHI P F, PENG Z, MA Y, et al. Typical safety risk and long-term management strategies for post-remediation site reuse[J]. Journal of Environmental Engineering Technology,2023,13(4):1625-1634. ⊗
|