Volume 14 Issue 3
May  2024
Turn off MathJax
Article Contents
LU B,HAO Y K,CHEN D M,et al.Analysis of energy consumption and carbon emissions in Anhui Province based on scenario analysis[J].Journal of Environmental Engineering Technology,2024,14(3):788-797 doi: 10.12153/j.issn.1674-991X.20230537
Citation: LU B,HAO Y K,CHEN D M,et al.Analysis of energy consumption and carbon emissions in Anhui Province based on scenario analysis[J].Journal of Environmental Engineering Technology,2024,14(3):788-797 doi: 10.12153/j.issn.1674-991X.20230537

Analysis of energy consumption and carbon emissions in Anhui Province based on scenario analysis

doi: 10.12153/j.issn.1674-991X.20230537
  • Received Date: 2023-07-10
  • Accepted Date: 2024-03-04
  • Rev Recd Date: 2023-12-21
  • Available Online: 2024-04-12
  • In order to conduct energy consumption and carbon emission prediction analysis at the regional level, energy consumption and carbon emissions in Anhui Province were taken as the research object. By constructing a LEAP Anhui prediction model, three scenarios including baseline scenario (BAS), development planning scenario (DPS), and energy conservation and emission reduction scenario (ERS), were designed to predict three different development paths in Anhui Province. The prediction results show that by 2035, the total energy consumption under BAS scenario will reach 2.3459×108 t (energy consumption is calculated based on standard coal), and compared to BAS scenario, the total energy consumption under DPS and ERS scenarios will decrease by 20.6% and 30.7%, respectively. The total energy consumption under ERS scenario will reach its peak in 2030, with a peak of 1.6416×108 t. Under BAS scenario, the total carbon emissions in Anhui Province will reach 5.122×108 t by 2035, with an average annual growth rate of 2.6%. Under DPS and ERS scenarios, the total carbon emissions will peak in 2030 and 2025, with 3.891×108 t and 3.572×108 t, respectively, both of which were able to fulfill China's commitment to achieve carbon peak before 2030. Based on the carbon constraint target, an optimization analysis was conducted on the energy structure of Anhui Province. Under the constraint path, the proportion of clean energy allocated to the three major systems is 39.3% for the tertiary industry, 23.3% for residential living, and 37.4% for the secondary industry. The minimum demand for clean energy is 1.07×1018 J, accounting for 20.6% of the total energy demand.

     

  • loading
  • [1]
    LIU C, LI Q. Air pollution, global warming and difficulties to replace fossil fuel with renewable energy[J]. Atmospheric and Climate Sciences,2023,13(4):526-538. doi: 10.4236/acs.2023.134030
    [2]
    国务院.关于印发2030年前碳达峰行动方案的通知[M].中华人民共和国国务院公报,2021(31):48-58.
    [3]
    国务院. 2030年前碳达峰行动方案[M]. 北京, 中华人民共和国国务院公报.2021.
    [4]
    TANG B J, HU Y J, YANG Y. The initial allocation of carbon emission quotas in China based on the industry perspective[J]. Emerging Markets Finance and Trade,2021,57(4):931-948. doi: 10.1080/1540496X.2019.1645006
    [5]
    WANG Q, LI S Y, LI R R. Forecasting energy demand in China and India: using single-linear, hybrid-linear, and non-linear time series forecast techniques[J]. Energy,2018,161:821-831. doi: 10.1016/j.energy.2018.07.168
    [6]
    WEI Y G, WANG Z C, WANG H W, et al. Compositional data techniques for forecasting dynamic change in China's energy consumption structure by 2020 and 2030[J]. Journal of Cleaner Production,2021,284:124702. doi: 10.1016/j.jclepro.2020.124702
    [7]
    KAZEMZADEH M R, AMJADIAN A, AMRAEE T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting[J]. Energy,2020,204:117948. doi: 10.1016/j.energy.2020.117948
    [8]
    倪沈侠,阎少宏,罗长银,等.基于时间序列ARIMA模型的能源数据分析与预测[J].新一代信息技术, 2019, 2(12):7.

    倪沈侠,阎少宏,罗长银,等.基于时间序列ARIMA模型的能源数据分析与预测[J].新一代信息技术, 2019, 2(12):7.
    [9]
    季琳. 基于ARIMA模型的河北省能源消费预测[J]. 商, 2016, (29): 296.

    季琳. 基于ARIMA模型的河北省能源消费预测[J]. 商, 2016, (29): 296.
    [10]
    DRAXLER F, VESCHGINI K, SALMHOFER M, et al. Essentially no barriers in neural network energy landscape[C]//Proceedings of Machine Learning. Stockholm: International Conference on Machine Learning, 2018.
    [11]
    HU Y C. Energy demand forecasting using a novel remnant GM (1, 1) model[J]. Soft Computing,2020,24(18):13903-13912. doi: 10.1007/s00500-020-04765-3
    [12]
    刘茂辉, 刘胜楠, 孙猛, 等. 基于STIRPAT模型的天津市碳达峰和碳中和分析[J]. 环境保护与循环经济,2022,42(2):8-13.

    刘茂辉, 刘胜楠, 孙猛, 等. 基于STIRPAT模型的天津市碳达峰和碳中和分析[J]. 环境保护与循环经济, 2022, 42(2): 8-13.
    [13]
    WANG S, WANG Y X, ZHOU C X, et al. Projections in various scenarios and the impact of economy, population, and technology for regional emission peak and carbon neutrality in China[J]. International Journal of Environmental Research and Public Health,2022,19(19):12126. doi: 10.3390/ijerph191912126
    [14]
    ZHANG Z X, JIA J S, GUO Y L, et al. Scenario of carbon dioxide (CO2) emission peaking and reduction path implication in five northwestern provinces of China by the low emissions analysis platform (LEAP) model[J]. Frontiers in Energy Research,2022,10:983751. doi: 10.3389/fenrg.2022.983751
    [15]
    余明成, 徐占军, 余健. 山西省CO2排放影响因素研究及情景分析[J]. 环境科学研究, 2018, 31(8): 1357-1365.

    余明成, 徐占军, 余健. 山西省CO2排放影响因素研究及情景分析[J]. 环境科学研究, 2018, 31(8): 1357-1365.
    [16]
    张剑,刘景洋,董莉,等. 中国能源消费CO2排放的影响因素及情景分析[J]. 环境工程技术学报,2023,13(1):71-78.

    ZHANG J, LIU J Y, DONG L, et al. Influencing factors and scenario analysis of China's CO2 emission of energy consumption[J]. Journal of Environmental Engineering Technology,2023,13(1):71-78.
    [17]
    TAN R R, FOO D C Y. Pinch analysis approach to carbon-constrained energy sector planning[J]. Energy,2007,32(8):1422-1429. doi: 10.1016/j.energy.2006.09.018
    [18]
    CRILLY D, ZHELEV T. Further emissions and energy targeting: an application of CO2 emissions pinch analysis to the Irish electricity generation sector[J]. Clean Technologies and Environmental Policy,2010,12(2):177-189. doi: 10.1007/s10098-009-0245-0
    [19]
    姚漫, 汪传旭. 碳排放约束下区域能源分配的Pinch分析[J]. 上海海事大学学报, 2012, 33(3): 58-63.

    姚漫, 汪传旭. 碳排放约束下区域能源分配的Pinch分析[J]. 上海海事大学学报, 2012, 33(3): 58-63.
    [20]
    COSSUTTA M, FOO D C Y, TAN R R. Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector[J]. Sustainable Production and Consumption,2021,25:259-270. doi: 10.1016/j.spc.2020.08.013
    [21]
    XI L, GAO P, WANG H L, et al. Optimization of energy structure in Zhuzhou City based on carbon pinch technology[J]. Energy and Energy Conservation,2023(11):49-52.
    [22]
    TANG J R, LIAO X B. Optimization of energy consumption structure in Jiangsu based on carbon pinch technology[J]. Resources Science,2014,36(12):2560-2568.
    [23]
    LIANG L L, LU Q C. Optimization of China's energy structure based on carbon pinch analysis[J]. Resources Science,2015,37(2):291-298.
    [24]
    KROEZE C, MOSIER A, NEVISON C, et al. Revised 1996 IPCC guidelines for national greenhouse gas inventories: chapter 4. Agriculture[M]. Bracknell: UK Meteorological Office, 1997.
    [25]
    ZHANG C Q, LUO H X. Research on carbon emission peak prediction and path of China's public buildings: scenario analysis based on LEAP model[J]. Energy and Buildings,2023,289:113053. doi: 10.1016/j.enbuild.2023.113053
    [26]
    安徽省人民政府关于印发安徽省国民经济和社会发展第十四个五年规划和2035年远景目标纲要的通知[J].安徽省人民政府公报,2021,(05):3.
    [27]
    安徽省政府办公厅和安徽省能源局. 《安徽省“十四五”能源发展规划》[M]. 合肥, 安徽省人民政府公报.2022.
    [28]
    国务院新闻办公室. 《中国应对气候变化的政策与行动》[M]. 北京: 国务院新闻办公室, 2021.
    [29]
    安徽省人民政府. 《安徽省碳达峰实施方案》[M]. 合肥: 安徽省人民政府, 2022.
    [30]
    安徽省发展改革委员会. 《安徽省工业领域碳达峰实施方案》[M]. 合肥: 安徽省发展改革委员会, 2022. ⊕
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article Views(151) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return