Citation: | JIANG J Y,ZHANG Y,HE X W,et al.Working principle of microbial fuel cell and strategies for enhancing power generation performance[J].Journal of Environmental Engineering Technology,2024,14(2):699-709 doi: 10.12153/j.issn.1674-991X.20230563 |
Microbial fuel cell (MFC) is a new technology that addresses the environmental deficiencies of other energy sources. At present, low energy output is a key bottleneck in the practical application of MFC. Based on the working principle of MFC, it was proposed that poor microbial activity, resistance to electron migration, proton transfer resistance, slow cathodic reduction reaction were the limiting factors for the energy output of MFC. The strategies for improving MFC electricity production performance were summarized from the following five aspects: adjusting pH and selecting the optimal salinity to enhance microbial metabolic activity; modifying anode materials to reduce electron migration resistance; enhancing electrolyte conductivity, optimizing membrane materials, and shortening electrode spacing to reduce proton transfer resistance; preparing efficient cathode catalysts and selecting excellent electron acceptors to accelerate the cathodic reduction reaction rate; and improving the configuration of MFC reactor to improve overall power generation performance. In the future, key research could be carried out in five areas, including synthesis of new cathode catalysts, reduction of membrane pollution, optimization of microbial growth environment, preparation of excellent electrode materials, and improvement of MFC reactor configuration.
[1] |
JADHAV D A, CARMONA-MARTÍNEZ A A, CHENDAKE A D, et al. Modeling and optimization strategies towards performance enhancement of microbial fuel cells[J]. Bioresource Technology,2021,320:124256. doi: 10.1016/j.biortech.2020.124256
|
[2] |
徐戴非, 吴兵党, 杨晶晶, 等. 藻炭改性电极强化微生物燃料电池产电及去除硝基苯性能[J]. 环境工程技术学报,2023,13(6):2092-2104. doi: 10.12153/j.issn.1674-991X.20230092
XU D F, WU B D, YANG J J, et al. Removal efficiency of nitrobenzene and electricity generation by microbial fuel cell with algal biochar modified electrode[J]. Journal of Environmental Engineering Technology,2023,13(6):2092-2104. doi: 10.12153/j.issn.1674-991X.20230092
|
[3] |
操家顺, 贺含悦, 李超, 等. 不同方式预处理污泥对微生物燃料电池的影响[J]. 环境科学研究,2018,31(8):1389-1398.
CAO J S, HE H Y, LI C, et al. Effects of different pretreatments on sludge in microbial fuel cell[J]. Research of Environmental Sciences,2018,31(8):1389-1398.
|
[4] |
綦琪, 王许云, 贾云. 微生物燃料电池电极材料研究进展[J]. 科技导报,2015,33(14):28-31. doi: 10.3981/j.issn.1000-7857.2015.14.004
QI Q, WANG X Y, JIA Y. Latest research development of electrode materials for microbial fuel cells[J]. Science & Technology Review,2015,33(14):28-31. doi: 10.3981/j.issn.1000-7857.2015.14.004
|
[5] |
PANDEY P, SHINDE V N, DEOPURKAR R L, et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery[J]. Applied Energy,2016,168:706-723. doi: 10.1016/j.apenergy.2016.01.056
|
[6] |
WEE J H. Applications of proton exchange membrane fuel cell systems[J]. Renewable and Sustainable Energy Reviews,2007,11(8):1720-1738. doi: 10.1016/j.rser.2006.01.005
|
[7] |
LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science,2015,347(6225):e1258832. doi: 10.1126/science.1258832
|
[8] |
陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展,2012,24(1):157-162.
CHEN L X, XIAO Y, ZHAO F. Biocathodes in microbial fuel cells[J]. Progress in Chemistry,2012,24(1):157-162.
|
[9] |
SINGH D, PRATAP D, BARANWAL Y, et al. A green technology for power generation[J]. Annals of Biological Research,2010,1(3):128-138.
|
[10] |
VENKATA MOHAN S, MOHANAKRISHNA G, REDDY B P, et al. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment[J]. Biochemical Engineering Journal,2008,39(1):121-130. doi: 10.1016/j.bej.2007.08.023
|
[11] |
DU Z W, LI H R, GU T Y. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances,2007,25(5):464-482. doi: 10.1016/j.biotechadv.2007.05.004
|
[12] |
DURRUTY I, BONANNI P S, GONZÁLEZ J F, et al. Evaluation of potato-processing wastewater treatment in a microbial fuel cell[J]. Bioresource Technology,2012,105:81-87. doi: 10.1016/j.biortech.2011.11.095
|
[13] |
PARKHEY P, SAHU R. Microfluidic microbial fuel cells: recent advancements and future prospects[J]. International Journal of Hydrogen Energy,2021,46(4):3105-3123. doi: 10.1016/j.ijhydene.2020.07.019
|
[14] |
JADHAV D A, MUNGRAY A K, ARKATKAR A, et al. Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability[J]. Sustainable Energy Technologies and Assessments,2021,45:101226. doi: 10.1016/j.seta.2021.101226
|
[15] |
李朝明, 许丹, 黄铭意, 等. 不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J]. 环境工程技术学报,2023,13(1):205-213. doi: 10.12153/j.issn.1674-991X.20220048
LI C M, XU D, HUANG M Y, et al. Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J]. Journal of Environmental Engineering Technology,2023,13(1):205-213. doi: 10.12153/j.issn.1674-991X.20220048
|
[16] |
孔晓英, 李连华, 孙永明, 等. 微生物燃料电池产能原理及输出功率的影响因素[J]. 现代化工,2007,27(增刊2):282-284.
|
[17] |
顾熠澐. 微生物燃料电池输出功率影响因素综述[J]. 水电与新能源,2014(2):69-74.
GU Y Y. Output power and its influencing factors of microbial fuel cells: a review[J]. Hydropower and New Energy,2014(2):69-74.
|
[18] |
JUNG S P, PANDIT S. Important factors influencing microbial fuel cell performance[M]//Microbial electrochemical technology. Amsterdam: Elsevier, 2019: 377-406.
|
[19] |
CHEN S L, PATIL S A, BROWN R K, et al. Strategies for optimizing the power output of microbial fuel cells: transitioning from fundamental studies to practical implementation[J]. Applied Energy,2019,233/234:15-28. doi: 10.1016/j.apenergy.2018.10.015
|
[20] |
Liang P, Huang X, Fan M Z, et al. Composition and distribution of internal resistance in three types of microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2007, 77: 551-558.
|
[21] |
ABOURACHED C, ENGLISH M J, LIU H. Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse[J]. Journal of Cleaner Production,2016,137:144-149. doi: 10.1016/j.jclepro.2016.07.048
|
[22] |
崔康平, 金松. 微生物燃料电池阳极室内电子受体竞争研究[J]. 环境科学研究,2010,23(1):90-93.
CUI K P, JIN S. Competition between electron acceptors in anodic chamber of microbial fuel cells[J]. Research of Environmental Sciences,2010,23(1):90-93.
|
[23] |
赵阳, 宋永会, 段亮. 微生物燃料电池降低活化内阻和欧姆内阻技术研究进展[J]. 环境工程技术学报,2021,11(2):343-353. doi: 10.12153/j.issn.1674-991X.20200167
ZHAO Y, SONG Y H, DUAN L. Technical research progress of reducing activation internal resistance and ohmic internal resistance in microbial fuel cells[J]. Journal of Environmental Engineering Technology,2021,11(2):343-353. doi: 10.12153/j.issn.1674-991X.20200167
|
[24] |
WANG S Q, TIAN S, ZHANG P Y, et al. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor[J]. Journal of Environmental Management,2019,252:109682. doi: 10.1016/j.jenvman.2019.109682
|
[25] |
NACHAMMAI K T, RAMACHANDRAN S, NAGARAJAN C, et al. Exploration of bioinformatics on microbial fuel cell technology: trends, challenges, and future prospects[J]. Journal of Chemistry,2023,2023:6902054.
|
[26] |
RISMANI-YAZDI H, CARVER S M, CHRISTY A D, et al. Cathodic limitations in microbial fuel cells: an overview[J]. Journal of Power Sources,2008,180(2):683-694. doi: 10.1016/j.jpowsour.2008.02.074
|
[27] |
王维大, 李浩然, 冯雅丽, 等. 微生物燃料电池的研究应用进展[J]. 化工进展,2014,33(5):1067-1076. doi: 10.3969/j.issn.1000-6613.2014.05.001
WANG W D, LI H R, FENG Y L, et al. Research and application advances in microbial fuel cell[J]. Chemical Industry and Engineering Progress,2014,33(5):1067-1076. doi: 10.3969/j.issn.1000-6613.2014.05.001
|
[28] |
LOGAN B E, REGAN J M. Microbial fuel cells: challenges and applications[J]. Environmental Science & Technology,2006,40(17):5172-5180.
|
[29] |
ZHOU M H, CHI M L, LUO J M, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources,2011,196(10):4427-4435. doi: 10.1016/j.jpowsour.2011.01.012
|
[30] |
LIU H, CHENG S A, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology,2005,39(14):5488-5493.
|
[31] |
ZHANG E R, LIU L, CUI Y Y. Effect of pH on the performance of the anode in microbial fuel cells[J]. Advanced Materials Research,2012,608/609:884-888. doi: 10.4028/www.scientific.net/AMR.608-609.884
|
[32] |
YUAN Y, ZHAO B, ZHOU S G, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells[J]. Bioresource Technology,2011,102(13):6887-6891. doi: 10.1016/j.biortech.2011.04.008
|
[33] |
段亮, 李世龙, 邢飞. 正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展[J]. 环境工程技术学报,2023,13(3):1150-1160. doi: 10.12153/j.issn.1674-991X.20220593
DUAN L, LI S L, XING F. Technical research progress of controlling reverse solute flux and membrane fouling in osmotic microbial fuel cell[J]. Journal of Environmental Engineering Technology,2023,13(3):1150-1160. doi: 10.12153/j.issn.1674-991X.20220593
|
[34] |
BEHERA M, GHANGREKAR M M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH[J]. Bioresource Technology,2009,100(21):5114-5121. doi: 10.1016/j.biortech.2009.05.020
|
[35] |
KUMAR S S, KUMAR V, GNANESWAR GUDE V, et al. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in microbial fuel cells (MFC) treating sulfate-laden wastewater[J]. Bioresource Technology,2020,306:123110. doi: 10.1016/j.biortech.2020.123110
|
[36] |
GUO F, LUO H Q, SHI Z Y, et al. Substrate salinity: a critical factor regulating the performance of microbial fuel cells, a review[J]. Science of the Total Environment,2021,763:143021. doi: 10.1016/j.scitotenv.2020.143021
|
[37] |
OH S E, LOGAN B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells[J]. Applied Microbiology and Biotechnology,2006,70(2):162-169. doi: 10.1007/s00253-005-0066-y
|
[38] |
LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology,2019,17:307-319. doi: 10.1038/s41579-019-0173-x
|
[39] |
ALI YAQOOB A, IBRAHIM M N M, RODRÍGUEZ-COUTO S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview[J]. Biochemical Engineering Journal,2020,164:107779. doi: 10.1016/j.bej.2020.107779
|
[40] |
HE L, DU P, CHEN Y Z, et al. Advances in microbial fuel cells for wastewater treatment[J]. Renewable and Sustainable Energy Reviews,2017,71:388-403. doi: 10.1016/j.rser.2016.12.069
|
[41] |
CI S Q, WEN Z H, CHEN J H, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J]. Electrochemistry Communications,2012,14(1):71-74. doi: 10.1016/j.elecom.2011.11.006
|
[42] |
HUGGINS T, WANG H M, KEARNS J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells[J]. Bioresource Technology,2014,157:114-119. doi: 10.1016/j.biortech.2014.01.058
|
[43] |
AIYER K S. How does electron transfer occur in microbial fuel cells[J]. World Journal of Microbiology and Biotechnology,2020,36(2):19. doi: 10.1007/s11274-020-2801-z
|
[44] |
MEHDINIA A, ZIAEI E, JABBARI A. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells[J]. Electrochimica Acta,2014,130:512-518. doi: 10.1016/j.electacta.2014.03.011
|
[45] |
WEI J C, LIANG P, HUANG X. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology,2011,102(20):9335-9344. doi: 10.1016/j.biortech.2011.07.019
|
[46] |
KUMAR G G, SATHIYA SARATHI V G, NAHM K S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J]. Biosensors and Bioelectronics,2013,43:461-475. doi: 10.1016/j.bios.2012.12.048
|
[47] |
ZHU Y X, JI J Y, REN J Y, et al. Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,455:92-96.
|
[48] |
CHOU H T, LEE H J, LEE C Y, et al. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold[J]. Bioresource Technology,2014,169:532-536. doi: 10.1016/j.biortech.2014.07.027
|
[49] |
PARK I H, CHRISTY M, KIM P, et al. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics,2014,58:75-80. doi: 10.1016/j.bios.2014.02.044
|
[50] |
KANG C S, EAKTASANG N, KWON D Y, et al. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell[J]. Bioresource Technology,2014,165:27-30. doi: 10.1016/j.biortech.2014.03.148
|
[51] |
WU X Y, TONG F, SONG T S, et al. Effect of zeolite-coated anode on the performance of microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology,2015,90(1):87-92.
|
[52] |
SCOTT K, RIMBU G A, KATURI K P, et al. Application of modified carbon anodes in microbial fuel cells[J]. Process Safety and Environmental Protection,2007,85(5):481-488. doi: 10.1205/psep07018
|
[53] |
WEN Z H, CI S Q, MAO S, et al. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells[J]. Journal of Power Sources,2013,234:100-106. doi: 10.1016/j.jpowsour.2013.01.146
|
[54] |
VIDHYESWARI D, SURENDHAR A, BHUVANESHWARI S. General aspects and novel PEMss in microbial fuel cell technology: a review[J]. Chemosphere,2022,309:136454. doi: 10.1016/j.chemosphere.2022.136454
|
[55] |
WANG X, CHENG S A, ZHANG X Y, et al. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)[J]. International Journal of Hydrogen Energy,2011,36(21):13900-13906. doi: 10.1016/j.ijhydene.2011.03.052
|
[56] |
AARON D, TSOURIS C, HAMILTON C Y, et al. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy[J]. Energies,2010,3(4):592-606. doi: 10.3390/en3040592
|
[57] |
TAMAKLOE R Y, DONKOR M K E, SINGH K. Fabrication and study of power- output of MultiChamber microbial fuel cells (MFCs) with clay as ion exchange partition[J]. European Scientific Journal, ESJ,2017,13(30):173. doi: 10.19044/esj.2017.v13n30p173
|
[58] |
ZHOU G Y, YOSHINO Y, YAMASHITA T, et al. Effect of anode size, membrane and membrane size on power generation and wastewater treatment in microbial fuel cells[J]. Applied Mechanics and Materials,2012,164:506-510. doi: 10.4028/www.scientific.net/AMM.164.506
|
[59] |
LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology,2004,38(14):4040-4046.
|
[60] |
JANICEK A, FAN Y Z, LIU H. Design of microbial fuel cells for practical application: a review and analysis of scale-up studies[J]. Biofuels,2014,5(1):79-92. doi: 10.4155/bfs.13.69
|
[61] |
马骏, 苏冬云, 濮海坤, 等. 微生物燃料电池反应器构型设计[J]. 电源技术,2015,39(10):2318-2320. doi: 10.3969/j.issn.1002-087X.2015.10.084
MA J, SU D Y, PU H K, et al. Reactor configuration design of microbial fuel cell[J]. Chinese Journal of Power Sources,2015,39(10):2318-2320. doi: 10.3969/j.issn.1002-087X.2015.10.084
|
[62] |
FLIMBAN S G A, HASSAN S H A, RAHMAN M M, et al. The effect of Nafion membrane fouling on the power generation of a microbial fuel cell[J]. International Journal of Hydrogen Energy,2020,45(25):13643-13651. doi: 10.1016/j.ijhydene.2018.02.097
|
[63] |
ZHANG X Y, CHENG S A, WANG X, et al. Separator characteristics for increasing performance of microbial fuel cells[J]. Environmental Science & Technology,2009,43(21):8456-8461.
|
[64] |
GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics,2003,18(4):327-334. doi: 10.1016/S0956-5663(02)00110-0
|
[65] |
DAUD S M, KIM B H, GHASEMI M, et al. Separators used in microbial electrochemical technologies: current status and future prospects[J]. Bioresource Technology,2015,195:170-179. doi: 10.1016/j.biortech.2015.06.105
|
[66] |
YANG E, CHAE K J, CHOI M J, et al. Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment[J]. Desalination,2019,452:40-67. doi: 10.1016/j.desal.2018.11.007
|
[67] |
PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering,2003,81(3):348-355. doi: 10.1002/bit.10501
|
[68] |
PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy,2010,35(17):9349-9384. doi: 10.1016/j.ijhydene.2010.05.017
|
[69] |
BEHERA M, GHANGREKAR M M. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness[J]. Water Science & Technology,2011,64(12):2468-2473. doi: 10.2166/wst.2011.822
|
[70] |
TAMBOLI E, ESWARI J. Microbial fuel cell configurations[J/OL]. Microbial Electrochemical Technology, 2019. DOI: 10.1016/B978-0-444-64052-9.00016-9.
|
[71] |
HOU B, SUN J, HU Y Y. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes[J]. Bioresource Technology,2011,102(6):4433-4438. doi: 10.1016/j.biortech.2010.12.092
|
[72] |
SANGEETHA T, MUTHUKUMAR M. Influence of electrode material and electrode distance on bioelectricity production from sago-processing wastewater using microbial fuel cell[J]. Environmental Progress & Sustainable Energy,2013,32(2):390-395.
|
[73] |
GHANGREKAR M M, SHINDE V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresource Technology,2007,98(15):2879-2885. doi: 10.1016/j.biortech.2006.09.050
|
[74] |
PAPILLON J, ONDEL O, MAIRE É. Scale up of single-chamber microbial fuel cells with stainless steel 3D anode: effect of electrode surface areas and electrode spacing[J]. Bioresource Technology Reports,2021,13:100632. doi: 10.1016/j.biteb.2021.100632
|
[75] |
CHENG S A, LIU H, LOGAN B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science & Technology,2006,40(7):2426-2432.
|
[76] |
NIE Y, LI L, WEI Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews,2015,44(8):2168-2201. doi: 10.1039/C4CS00484A
|
[77] |
YU D S, NAGELLI E, DU F, et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. The Journal of Physical Chemistry Letters,2010,1(14):2165-2173. doi: 10.1021/jz100533t
|
[78] |
ERABLE B, FÉRON D, BERGEL A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review[J]. ChemSusChem,2012,5(6):975-987. doi: 10.1002/cssc.201100836
|
[79] |
GAUTAM R K, BHATTACHARJEE H, VENKATA M S, et al. Nitrogen doped graphene supported α-MnO2 nanorods for efficient ORR in a microbial fuel cell[J]. RSC Advances,2016,6(111):110091-110101. doi: 10.1039/C6RA23392A
|
[80] |
XIA Z H, AN L, CHEN P K, et al. Oxygen reduction: non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors[J]. Advanced Energy Materials,2016,6(17):1670104.
|
[81] |
STACY J, REGMI Y N, LEONARD B, et al. The recent progress and future of oxygen reduction reaction catalysis: a review[J]. Renewable and Sustainable Energy Reviews,2017,69:401-414. doi: 10.1016/j.rser.2016.09.135
|
[82] |
PANDIT S, SENGUPTA A, KALE S, et al. Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane[J]. Bioresource Technology,2011,102(3):2736-2744. doi: 10.1016/j.biortech.2010.11.038
|
[83] |
YOU S J, ZHAO Q L, ZHANG J N, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. Journal of Power Sources,2006,162(2):1409-1415. doi: 10.1016/j.jpowsour.2006.07.063
|
[84] |
LI J, FU Q, LIAO Q, et al. Persulfate: a self-activated cathodic electron acceptor for microbial fuel cells[J]. Journal of Power Sources,2009,194(1):269-274. doi: 10.1016/j.jpowsour.2009.04.055
|
[85] |
OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental Science & Technology,2004,38(18):4900-4904.
|
[86] |
LI F X, SHARMA Y, LEI Y, et al. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation[J]. Applied Biochemistry and Biotechnology,2010,160(1):168-181. doi: 10.1007/s12010-008-8516-5
|
[87] |
LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology,2006,40(17):5181-5192.
|
[88] |
SAMARASINGHE N, LONGTIN N, FERNANDO S. Performance of Methylococcus capsulatus based microbial and enzymatic proton exchange membrane fuel cells[J]. Renewable Energy,2022,195:17-27. doi: 10.1016/j.renene.2022.06.023
|
[89] |
HE Z, MINTEER S D, ANGENENT L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental Science & Technology,2005,39(14):5262-5267.
|
[90] |
刘春梅, 廖强, 叶丁丁, 等. 矩形与双筒型微生物燃料电池产电特性比较[J]. 电源技术,2015,39(9):1891-1894. doi: 10.3969/j.issn.1002-087X.2015.09.028
LIU C M, LIAO Q, YE D D, et al. Comparison of electricity generation performance of rectangular and tubular microbial fuel cells[J]. Chinese Journal of Power Sources,2015,39(9):1891-1894. doi: 10.3969/j.issn.1002-087X.2015.09.028
|
[91] |
BOND D R, LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555. doi: 10.1128/AEM.69.3.1548-1555.2003
|
[92] |
赵世辉. 双室型微生物燃料电池在制浆废水处理中的应用研究[D]. 广州: 华南理工大学, 2011.
|
[93] |
ABUBACKAR H N, BIRYOL İ, AYOL A. Yeast industry wastewater treatment with microbial fuel cells: effect of electrode materials and reactor configurations[J]. International Journal of Hydrogen Energy,2023,48(33):12424-12432. doi: 10.1016/j.ijhydene.2022.05.277
|
[94] |
CHENG S A, DEMPSEY B A, LOGAN B E. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies[J]. Environmental Science & Technology,2007,41(23):8149-8153.
|
[95] |
SONG Y E, LEE S, KIM M, et al. Metal-free cathodic catalyst with nitrogen- and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells[J]. Journal of Power Sources,2020,451:227816. doi: 10.1016/j.jpowsour.2020.227816
|
[96] |
VARANASI J L, PRASAD S, SINGH H, et al. Improvement of bioelectricity generation and microalgal productivity with concomitant wastewater treatment in flat-plate microbial carbon capture cell[J]. Fuel,2020,263:116696. doi: 10.1016/j.fuel.2019.116696
|
[97] |
张军. 微生物燃料电池阳极构型及其物质传输强化和产电特性[D]. 重庆: 重庆大学, 2015.
|
[98] |
赵立新, 邹立军, 王宣, 等. 以葡萄糖为燃料的上流式单室微生物燃料电池[J]. 大庆石油学院学报,2010,34(1):76-79.
ZHAO L X, ZOU L J, WANG X, et al. An up-flow single-chamber microbial fuel cell using glucose as fuel[J]. Journal of Daqing Petroleum Institute,2010,34(1):76-79.
|
[99] |
PARK Y, PARK S, NGUYEN V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal,2017,316:673-679. doi: 10.1016/j.cej.2017.02.005
|
[100] |
HE Z, WAGNER N, MINTEER S D, et al. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology,2006,40(17):5212-5217.
|
[101] |
ZHANG M, MA Z K, ZHAO N, et al. Increased power generation from cylindrical microbial fuel cell inoculated with P. aeruginosa[J]. Biosensors and Bioelectronics,2019,141:111394. ◇ doi: 10.1016/j.bios.2019.111394
|