Citation: | WU H H,GAO S J,LIU T T,et al.Research progress on tracing and characterization of dissolved organic matter in water environment[J].Journal of Environmental Engineering Technology,2024,14(2):474-486 doi: 10.12153/j.issn.1674-991X.20230651 |
Dissolved organic matter (DOM) in water has a wide range of sources and complex components, which can participate in the migration and transformation of heavy metals and biogeochemical cycles in water. Some technical means can be used to identify the source of DOM in water, and realize the characterization of DOM components and properties, so as to understand its ecological environmental effects. The composition, characteristics and current research hotspots of DOM in water environment were briefly introduced. The application characteristics, important characterization parameters, influencing factors and limitations of UV-Vis absorption spectroscopy, three-dimensional fluorescence spectroscopy, stable isotopes, biomarkers and FT-ICR-MS in the tracing and characterization of DOM in water environment were summarized and compared. The results showed that both UV-Vis absorption spectroscopy and three-dimensional fluorescence spectroscopy had the advantages of convenient operation, fast analysis speed and no sample destruction, but their emphasis on DOM characterization was different. Stable isotope technology focused on the isotopic composition and content of carbon, nitrogen and other elements in DOM, biomarkers could record the information of DOM molecular structure, while FT-ICR-MS could characterize DOM from the molecular level. All the above technologies have broad application prospects for DOM research. However, due to the complexity of DOM components and elements as well as the limitations of each technology, the combined use of multiple technologies has become the development trend of DOM characterization and analysis. Therefore, the conditions, objectives and advantages of multi-technology co-application were described, and the research progress and cases of water environment DOM based on multi-technology integration were summarized. Finally, the future development direction of DOM traceability and representation was prospected.
[1] |
ZHANG X L, YU H B, GAO H J, et al. Explore variations of DOM components in different landcover areas of riparian zone by EEM-PARAFAC and partial least squares structural equation model[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,291:122300. doi: 10.1016/j.saa.2022.122300
|
[2] |
ZARK M, DITTMAR T. Universal molecular structures in natural dissolved organic matter[J]. Nature Communications,2018,9:3178. doi: 10.1038/s41467-018-05665-9
|
[3] |
BEGUM M S, PARK H Y, SHIN H S, et al. Separately tracking the sources of hydrophobic and hydrophilic dissolved organic matter during a storm event in an agricultural watershed[J]. Science of the Total Environment,2023,873:162347. doi: 10.1016/j.scitotenv.2023.162347
|
[4] |
ZHANG X L, NIE L, GAO H J, et al. Applying second derivative synchronous fluorescence spectroscopy combined with Gaussian band fitting to trace variations of DOM fractions along an urban river[J]. Ecological Indicators,2023,146:109872. doi: 10.1016/j.ecolind.2023.109872
|
[5] |
HANSEN A M, KRAUS T E C, PELLERIN B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography,2016,61(3):1015-1032. doi: 10.1002/lno.10270
|
[6] |
NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): a critical review[J]. Analytical and Bioanalytical Chemistry,2013,405(1):109-124. doi: 10.1007/s00216-012-6363-2
|
[7] |
ZHAO P P, DU Z L, FU Q L, et al. Molecular composition and chemodiversity of dissolved organic matter in wastewater sludge via Fourier transform ion cyclotron resonance mass spectrometry: effects of extraction methods and electrospray ionization modes[J]. Water Research,2023,232:119687. doi: 10.1016/j.watres.2023.119687
|
[8] |
KALLE K, WATTENBERG H. Über den kupfergehalt des oZeanwassers[J]. Naturwissenschaften,1938,26(38):630-631.
|
[9] |
KALLE G P, AGRAWAL A K, SIVASUBRAMANIAN P. Mutation to ultraviolet resistance and filament formation in bacteria[J]. Indian Journal of Genetics and Plant Breeding,1966,26:431.
|
[10] |
GUO W, YANG F, LI Y P, et al. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake[J]. Science of the Total Environment,2017,603/604:699-708. doi: 10.1016/j.scitotenv.2017.02.024
|
[11] |
IFON B E, ADYARI B, HOU L Y, et al. Insight into variation and controlling factors of dissolved organic matter between urban rivers undergoing different anthropogenic influences[J]. Journal of Environmental Management,2023,326:116737. doi: 10.1016/j.jenvman.2022.116737
|
[12] |
KELSO J E, BAKER M A. Organic matter sources and composition in four watersheds with mixed land cover[J]. Hydrobiologia,2022,849(12):2663-2682. doi: 10.1007/s10750-022-04884-y
|
[13] |
MU G Y, JI M C, LI S J. Evaluation of CDOM sources and their links with antibiotics in the rivers dividing China and North Korea using fluorescence spectroscopy[J]. Environmental Science and Pollution Research,2018,25(27):27545-27560. doi: 10.1007/s11356-018-2773-9
|
[14] |
朱宁美, 崔兵, 刘东萍, 等. 典型城市河流底泥溶解性有机质与重金属响应机制研究[J]. 环境工程技术学报,2021,11(6):1092-1101. doi: 10.12153/j.issn.1674-991X.20210093
ZHU N M, CUI B, LIU D P, et al. Response mechanism of dissolved organic matter and heavy metals in sediments of typical urban rivers[J]. Journal of Environmental Engineering Technology,2021,11(6):1092-1101. doi: 10.12153/j.issn.1674-991X.20210093
|
[15] |
STEDMON C A, NELSON N B. The optical properties of DOM in the ocean[M]//Biogeochemistry of marine dissolved organic matter. Amsterdam: Elsevier, 2015: 481-508.
|
[16] |
王安月. 夏季长江口水体可溶有机质的组成及其空间展布特征[D]. 杭州: 浙江大学, 2021.
|
[17] |
言宗骋, 高红杰, 郭旭晶, 等. 蘑菇湖沉积物间隙水溶解性有机质紫外可见光谱研究[J]. 环境工程技术学报,2019,9(6):685-691. doi: 10.12153/j.issn.1674-991X.2019.05.160
YAN Z C, GAO H J, GUO X J, et al. Study on UV-vis spectra of dissolved organic matter from sediment interstitial water in Moguhu Lake[J]. Journal of Environmental Engineering Technology,2019,9(6):685-691. doi: 10.12153/j.issn.1674-991X.2019.05.160
|
[18] |
HERZSPRUNG P, von TÜMPLING W, HERTKORN N, et al. Variations of DOM quality in inflows of a drinking water reservoir: linking of van Krevelen diagrams with EEMF spectra by rank correlation[J]. Environmental Science & Technology,2012,46(10):5511-5518.
|
[19] |
HELMS J R, MAO J D, STUBBINS A, et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching[J]. Aquatic Sciences,2014,76(3):353-373. doi: 10.1007/s00027-014-0340-0
|
[20] |
BAO H Y, QIAO J, HUANG D K, et al. Molecular level characterization of the biolability of rainwater dissolved organic matter[J]. Science of the Total Environment,2023,862:160709. doi: 10.1016/j.scitotenv.2022.160709
|
[21] |
芦晓峰, 朱山林, 张岚, 等. 乌伦古湖冰封期溶解性有机质分布特征及来源解析[J]. 环境工程技术学报,2023,13(5):1798-1807. doi: 10.12153/j.issn.1674-991X.20221092
LU X F, ZHU S L, ZHANG L, et al. Dissolved organic matter distribution characteristics and source analysis of Ulungur Lake during ice sealing period[J]. Journal of Environmental Engineering Technology,2023,13(5):1798-1807. doi: 10.12153/j.issn.1674-991X.20221092
|
[22] |
FERRARI G M. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions)[J]. Marine Chemistry,2000,70(4):339-357. doi: 10.1016/S0304-4203(00)00036-0
|
[23] |
BREZONIK P L, OLMANSON L G, FINLAY J C, et al. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters[J]. Remote Sensing of Environment,2015,157:199-215. doi: 10.1016/j.rse.2014.04.033
|
[24] |
HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography,2008,53(3):955-969. doi: 10.4319/lo.2008.53.3.0955
|
[25] |
LI P H, HUR J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology,2017,47(3):131-154. doi: 10.1080/10643389.2017.1309186
|
[26] |
CHEN W, QIAN C, ZHOU K G, et al. Molecular spectroscopic characterization of membrane fouling: a critical review[J]. Chem,2018,4(7):1492-1509. doi: 10.1016/j.chempr.2018.03.011
|
[27] |
吴东明, 何翠翠, 邓晓, 等. 土壤溶解性有机质的组分分离与表征技术研究进展[J]. 东北农业科学,2022,47(2):48-55.
WU D M, HE C C, DENG X, et al. The technology of isolation and characterization for dissolved organic matter in soil[J]. Journal of Northeast Agricultural Sciences,2022,47(2):48-55.
|
[28] |
STUBBINS A, LAPIERRE J F, BERGGREN M, et al. What's in an EEM: molecular signatures associated with dissolved organic fluorescence in boreal Canada[J]. Environmental Science & Technology,2014,48(18):10598-10606.
|
[29] |
SPENCER R G M, GUO W D, RAYMOND P A, et al. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta,2014,142:64-74. doi: 10.1016/j.gca.2014.08.006
|
[30] |
LI L, WANG Y, ZHANG W J, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: a review[J]. Chemical Engineering Journal,2020,381:122676. doi: 10.1016/j.cej.2019.122676
|
[31] |
McKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography,2001,46(1):38-48. doi: 10.4319/lo.2001.46.1.0038
|
[32] |
ZSOLNAY A, BAIGAR E, JIMENEZ M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere,1999,38(1):45-50. doi: 10.1016/S0045-6535(98)00166-0
|
[33] |
李昊洋. 基于多技术联用的洱海有机质分布特征及溯源研究[D]. 北京: 北京交通大学, 2022.
|
[34] |
COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346. doi: 10.1016/0304-4203(95)00062-3
|
[35] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
|
[36] |
MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods,2013,5(23):6557-6566. doi: 10.1039/c3ay41160e
|
[37] |
BAI Y J, ZHANG S R, MU E L, et al. Characterizing the spatiotemporal distribution of dissolved organic matter (DOM) in the Yongding River Basin: insights from flow regulation[J]. Journal of Environmental Management,2023,325:116476. doi: 10.1016/j.jenvman.2022.116476
|
[38] |
ZHAO Y Q, SHEN J, FENG J M, et al. Relative contributions of different sources to DOM in Erhai Lake as revealed by PLS-PM[J]. Chemosphere,2022,299:134377. doi: 10.1016/j.chemosphere.2022.134377
|
[39] |
ZHANG W, LI T, DONG B. Characterizing dissolved organic matter in Taihu Lake with PARAFAC and SOM method[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2022,85(2):706-718. doi: 10.2166/wst.2022.010
|
[40] |
CUSS C W, McCONNELL S M, GUÉGUEN C. Combining parallel factor analysis and machine learning for the classification of dissolved organic matter according to source using fluorescence signatures[J]. Chemosphere,2016,155:283-291. doi: 10.1016/j.chemosphere.2016.04.061
|
[41] |
刘健, 祁黎明, 于常红, 等. 三维荧光光谱应用于海水中有色溶解有机物分析的探讨[J]. 海洋环境科学,2014,33(4):650-656.
LIU J, QI L M, YU C H, et al. Discussion about the application of excitation emission matrix spectroscopy in the analysis of colored dissolved organic matter in seawater[J]. Marine Environmental Science,2014,33(4):650-656.
|
[42] |
敖静, 王涛, 常瑞英. 三维荧光光谱法在土壤溶解性有机质组分解析中的应用[J]. 土壤通报,2022,53(3):738-746.
AO J, WANG T, CHANG R Y. Application of the three-dimensional excitation-emission matrix fluorescence spectroscopy in the analysis of soil dissolved organic matter components[J]. Chinese Journal of Soil Science,2022,53(3):738-746.
|
[43] |
褚江勇, 廖振良. 水环境中溶解性有机物溯源分析及分子结构表征概述[J]. 能源环境保护,2020,34(2):1-7. doi: 10.3969/j.issn.1006-8759.2020.02.001
CHU J Y, LIAO Z L. Source tracking and molecular structure characterization of dissolved organic matter in aqueous environment[J]. Energy Environmental Protection,2020,34(2):1-7. doi: 10.3969/j.issn.1006-8759.2020.02.001
|
[44] |
MILLIGAN H E, PRETZLAW T D, HUMPHRIES M M. Stable isotope differentiation of freshwater and terrestrial vascular plants in two subarctic regions[J]. Ecoscience,2010,17(3):265-275.
|
[45] |
刘金亮, 薛滨, 姚书春, 等. 湖泊水生植物稳定碳同位素分馏机制与应用研究进展[J]. 生态学报,2020,40(8):2533-2544.
LIU J L, XUE B, YAO S C, et al. Mechanisms of stable carbon isotope fractionation of aquatic plants and the research advances of application[J]. Acta Ecologica Sinica,2020,40(8):2533-2544.
|
[46] |
林清, 王绍令. 沉水植物稳定碳同位素组成及影响因素分析[J]. 生态学报,2001,21(5):806-809. doi: 10.3321/j.issn:1000-0933.2001.05.018
LIN Q, WANG S L. The composition of stable carbon isotope and some influencing factors of submerged plant[J]. Acta Ecologica Sinica,2001,21(5):806-809. doi: 10.3321/j.issn:1000-0933.2001.05.018
|
[47] |
LIU Y, WANG X Y, WEN Q, et al. Identifying sources and variations of organic matter in an urban river in Beijing, China using stable isotope analysis[J]. Ecological Indicators,2019,102:783-790. doi: 10.1016/j.ecolind.2019.03.023
|
[48] |
RIDDLE B, FOX J, MAHONEY D T, et al. Considerations on the use of carbon and nitrogen isotopic ratios for sediment fingerprinting[J]. Science of the Total Environment,2022,817:152640. doi: 10.1016/j.scitotenv.2021.152640
|
[49] |
LI Z W, WANG S L, NIE X D, et al. The application and potential non-conservatism of stable isotopes in organic matter source tracing[J]. Science of the Total Environment,2022,838:155946. doi: 10.1016/j.scitotenv.2022.155946
|
[50] |
YU X, ZHANG J L, KONG F L, et al. Identification of source apportionment and its spatial variability of dissolved organic matter in Dagu River-Jiaozhou Bay Estuary based on the isotope and fluorescence spectroscopy analysis[J]. Ecological Indicators,2019,102:528-537. doi: 10.1016/j.ecolind.2019.03.004
|
[51] |
DERRIEN M, KIM M S, OCK G, et al. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy[J]. Science of the Total Environment,2018,618:569-578. doi: 10.1016/j.scitotenv.2017.11.067
|
[52] |
CARNEIRO L M, DO ROSÁRIO ZUCCHI M, de JESUS T B, et al. δ13C, δ15N and TOC/TN as indicators of the origin of organic matter in sediment samples from the estuary of a tropical river[J]. Marine Pollution Bulletin,2021,172:112857. doi: 10.1016/j.marpolbul.2021.112857
|
[53] |
WU H, ZHANG H C, CHANG F Q, et al. Isotopic constraints on sources of organic matter and environmental change in Lake Yangzong, Southwest China[J]. Journal of Asian Earth Sciences,2021,217:104845. doi: 10.1016/j.jseaes.2021.104845
|
[54] |
张昊, 李建平. 稳定碳同位素在草地生态系统碳循环中的应用与展望[J]. 水土保持研究,2021,28(1):394-400.
ZHANG H, LI J P. Application and prospect of stable carbon isotope to the study of carbon cycle in grassland ecosystem[J]. Research of Soil and Water Conservation,2021,28(1):394-400.
|
[55] |
FRY B. Alternative approaches for solving underdetermined isotope mixing problems[J]. Marine Ecology Progress Series,2013,472:1-13. doi: 10.3354/meps10168
|
[56] |
PHILLIPS D L, NEWSOME S D, GREGG J W. Combining sources in stable isotope mixing models: alternative methods[J]. Oecologia,2005,144(4):520-527. doi: 10.1007/s00442-004-1816-8
|
[57] |
YIN Z, LI L Q, LIU C Y, et al. Historical variations of sedimentary organic matter sources and their relationships with human socio-economic activities in multiple habitats of a shallow lake[J]. Ecological Indicators,2022,140:109011. doi: 10.1016/j.ecolind.2022.109011
|
[58] |
GUO Q J, WANG C Y, WEI R F, et al. Qualitative and quantitative analysis of source for organic carbon and nitrogen in sediments of rivers and lakes based on stable isotopes[J]. Ecotoxicology and Environmental Safety,2020,195:110436. doi: 10.1016/j.ecoenv.2020.110436
|
[59] |
HEDGES J I, OADES J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry,1997,27(7/8):319-361.
|
[60] |
梁作兵, 孙玉川, 李建鸿, 等. 典型岩溶区地下河中溶解态脂类生物标志物来源解析及其变化特征[J]. 环境科学,2016,37(5):1814-1822.
LIANG Z B, SUN Y C, LI J H, et al. Sources and variation characteristics of dissolved lipid biomarkers in a typical Karst underground river[J]. Environmental Science,2016,37(5):1814-1822.
|
[61] |
CHEN Y, ZHAO Z H, WANG Y H, et al. Effects of organic carbon burial on biomarker component changes in contamination in northeast Dianchi watershed[J]. Journal of Hazardous Materials,2023,445:130474. doi: 10.1016/j.jhazmat.2022.130474
|
[62] |
BHANDARI R, ROUTH J, SHARMA S, et al. Contrasting lipid biomarkers in mountain rivers in the Nepal Himalayas: organic matter characteristics and contribution to the fluvial carbon pool[J]. Geoscience Frontiers,2021,12(6):101231. doi: 10.1016/j.gsf.2021.101231
|
[63] |
蒲阳, 葛井莲, 何天豪, 等. 太阳辐射影响高原生态系统的湖泊沉积生物标志物证据[J]. 地球科学前沿,2018,8(1):9-18.
|
[64] |
COMISAROW M B, MARSHALL A G. Fourier transform ion cyclotron resonance spectroscopy[J]. Chemical Physics Letters,1974,25(2):282-283. doi: 10.1016/0009-2614(74)89137-2
|
[65] |
FIEVRE A, SOLOUKI T, MARSHALL A G, et al. High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization[J]. Energy & Fuels,1997,11(3):554-560.
|
[66] |
何晨, 何丁, 陈春茂, 等. 傅里叶变换离子回旋共振质谱在溶解性有机质组成分析中的应用[J]. 中国科学:地球科学,2022,52(12):2323-2341. doi: 10.1360/SSTe-2021-0390
HE C, HE D, CHEN C M, et al. Application of Fourier transform ion cyclotron resonance mass spectrometry in molecular characterization of dissolved organic matter[J]. Scientia Sinica (Terrae),2022,52(12):2323-2341. doi: 10.1360/SSTe-2021-0390
|
[67] |
KIM S, KRAMER R W, HATCHER P G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram[J]. Analytical Chemistry,2003,75(20):5336-5344. doi: 10.1021/ac034415p
|
[68] |
LASZAKOVITS J R, MacKAY A A. Data-based chemical class regions for van Krevelen diagrams[J]. Journal of the American Society for Mass Spectrometry,2022,33(1):198-202. doi: 10.1021/jasms.1c00230
|
[69] |
LIU S S, HE Z Q, TANG Z, et al. Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis[J]. Science of the Total Environment,2020,703:134764. doi: 10.1016/j.scitotenv.2019.134764
|
[70] |
GONSIOR M, PEAKE B M, COOPER W T, et al. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology,2009,43(3):698-703.
|
[71] |
WEN Z D, SONG K S, LIU G, et al. Characterizing DOC sources in China’s Haihe River Basin using spectroscopy and stable carbon isotopes[J]. Environmental Pollution,2020,258:113684. doi: 10.1016/j.envpol.2019.113684
|
[72] |
RUAN M Q, WU F C, SUN F H, et al. Molecular-level exploration of properties of dissolved organic matter in natural and engineered water systems: a critical review of FTICR-MS application[J]. Critical Reviews in Environmental Science and Technology,2023,53(16):1534-1562. doi: 10.1080/10643389.2022.2157167
|
[73] |
ZHEREBKER A, RUKHOVICH G D, SARYCHEVA A, et al. Aromaticity index with improved estimation of carboxyl group contribution for biogeochemical studies[J]. Environmental Science & Technology,2022,56(4):2729-2737.
|
[74] |
D’ANDRILLI J, COOPER W T, FOREMAN C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability[J]. Rapid Communications in Mass Spectrometry:RCM,2015,29(24):2385-2401. doi: 10.1002/rcm.7400
|
[75] |
HERTKORN N, FROMMBERGER M, WITT M, et al. Natural organic matter and the event horizon of mass spectrometry[J]. Analytical Chemistry,2008,80(23):8908-8919. doi: 10.1021/ac800464g
|
[76] |
KELLERMAN A M, GUILLEMETTE F, PODGORSKI D C, et al. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems[J]. Environmental Science & Technology,2018,52(5):2538-2548.
|
[77] |
YUAN K T, WAN Q, CHAI B B, et al. Characterizing the effects of stormwater runoff on dissolved organic matter in an urban river (Jiujiang, Jiangxi Province, China) using spectral analysis[J]. Environmental Science and Pollution Research,2023,30(17):50649-50660. doi: 10.1007/s11356-023-25933-6
|
[78] |
马文娟, 刘丹妮, 杨芳, 等. 水环境中污染物同位素溯源的研究进展[J]. 环境工程技术学报,2020,10(2):242-250. doi: 10.12153/j.issn.1674-991X.20190081
MA W J, LIU D N, YANG F, et al. Research progress in isotope methods for tracing contaminants in water environment[J]. Journal of Environmental Engineering Technology,2020,10(2):242-250. doi: 10.12153/j.issn.1674-991X.20190081
|
[79] |
ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645
|
[80] |
JIN X C, CHEN X Q, GAO L M, et al. The spectral resolution of DOM in urban rivers affected by different non-point source intensities using self-organizing maps[J]. Water Science and Technology,2023,88(1):266-277. doi: 10.2166/wst.2023.187
|
[81] |
LAN J J, LIU L L, WANG X, et al. DOM tracking and prediction of rural domestic sewage with UV-vis and EEM in the Yangtze River Delta, China[J]. Environmental Science and Pollution Research,2022,29(49):74579-74590. doi: 10.1007/s11356-022-20979-4
|
[82] |
CAWLEY K M, DING Y, FOURQUREAN J, et al. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes[J]. Marine and Freshwater Research,2012,63(11):1098. doi: 10.1071/MF12028
|
[83] |
XIANG R, TIAN Z B, ZHANG C D, et al. Characterization of dissolved organic matter content, composition, and source during spring algal bloom in tributaries of the Three Gorges Reservoir[J]. Science of the Total Environment,2023,879:163139. doi: 10.1016/j.scitotenv.2023.163139
|
[84] |
KIM M S, LIM B R, JEON P, et al. Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes[J]. Water Research,2023,230:119470. doi: 10.1016/j.watres.2022.119470
|
[85] |
TANG G, LI B R, ZHANG B W, et al. Dynamics of dissolved organic matter and dissolved organic nitrogen during anaerobic/anoxic/oxic treatment processes[J]. Bioresource Technology,2021,331:125026. doi: 10.1016/j.biortech.2021.125026
|
[86] |
XU L, HU Q, JIAN M F, et al. Exploring the optical properties and molecular characteristics of dissolved organic matter in a large river-connected lake (Poyang Lake, China) using optical spectroscopy and FT-ICR MS analysis[J]. Science of the Total Environment,2023,879:162999. doi: 10.1016/j.scitotenv.2023.162999
|
[87] |
POWERS L C, LUEK J L, SCHMITT-KOPPLIN P, et al. Seasonal changes in dissolved organic matter composition in Delaware Bay, USA in March and August 2014[J]. Organic Geochemistry,2018,122:87-97. doi: 10.1016/j.orggeochem.2018.05.005
|
[88] |
ZHANG Y L, YANG K L, CHEN H M, et al. Origin, composition, and accumulation of dissolved organic matter in a hypersaline lake of the Qinghai-Tibet Plateau[J]. Science of the Total Environment,2023,868:161612. doi: 10.1016/j.scitotenv.2023.161612
|
[89] |
HARIR M, CAWLEY K M, HERTKORN N, et al. Molecular and spectroscopic changes of peat-derived organic matter following photo-exposure: effects on heteroatom composition of DOM[J]. Science of the Total Environment,2022,838:155790. ◇ doi: 10.1016/j.scitotenv.2022.155790
|