Volume 14 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
HUANG Q,LIU A R,ZHANG L J.Measurement of total hydrogen content in hydrogen nanobubble water by headspace gas chromatography[J].Journal of Environmental Engineering Technology,2024,14(4):1105-1111 doi: 10.12153/j.issn.1674-991X.20230704
Citation: HUANG Q,LIU A R,ZHANG L J.Measurement of total hydrogen content in hydrogen nanobubble water by headspace gas chromatography[J].Journal of Environmental Engineering Technology,2024,14(4):1105-1111 doi: 10.12153/j.issn.1674-991X.20230704

Measurement of total hydrogen content in hydrogen nanobubble water by headspace gas chromatography

doi: 10.12153/j.issn.1674-991X.20230704
  • Received Date: 2023-10-03
  • Accepted Date: 2024-01-31
  • Rev Recd Date: 2024-01-18
  • Hydrogen nanobubbles have shown great potential in various applications such as environmental remediation, energy fuel production, and medical applications. However, accurately determining the total hydrogen content in hydrogen nanobubble water has been a challenge, which affects the evaluation of nanobubble generator performance. To address this issue, a method using headspace gas chromatography was developed, which transferred hydrogen from the liquid phase to the gas phase by heating the headspace bottle to achieve gas-liquid equilibrium, and then determined the total hydrogen content in hydrogen nanobubble water using gas chromatography. The results show that the optimal equilibrium condition for sample pretreatment is 50 ℃ for 15 min. It has been confirmed that the headspace gas chromatography method is suitable for analyzing a wide range of hydrogen nanobubble water systems (with number concentrations ranging from 106 to 108 mL−1 and average particle sizes ranging from 100 to 300 nm) prepared by most nanobubble generation methods, by detecting both number concentration and particle size distribution of hydrogen nanobubbles in hydrogen nanobubble water. When the number concentrations of hydrogen nanobubbles are within the range of 6.7×106-3.8×108 mL−1, the corresponding measured hydrogen contents fall between 0-3.12 mg/L. The changes in number concentrations of hydrogen nanobubbles are consistent with the corresponding hydrogen contents, and the detection process can be completed within 2 minutes. This method is simple and efficient, and can fulfill the test requirements regarding different number concentrations of hydrogen nanobubble water, providing a feasible option for quantifying the total hydrogen content in hydrogen nanobubble water. It facilitates further research on their significant applications of hydrogen nanobubbles in various fields and enables the evaluation of nanobubble generator performance.

     

  • loading
  • [1]
    ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society,2020,142(12):5583-5593. doi: 10.1021/jacs.9b11303
    [2]
    黄青, 刘爱荣, 张立娟. 微纳米气泡特性及在土壤环境改善中的应用[J]. 环境工程技术学报,2022,12(4):1324-1332.

    HUANG Q, LIU A R, ZHANG L J. Characteristics of micro-nanobubbles and their applications in soil environment improvement[J]. Journal of Environmental Engineering Technology,2022,12(4):1324-1332.
    [3]
    GADEA E D, MOLINERO V, SCHERLIS D A. Nanobubble stability and formation on solid-liquid interfaces in open environments[J]. Nano Letters,2023,23(15):7206-7212. doi: 10.1021/acs.nanolett.3c02261
    [4]
    BABU K S, AMAMCHARLA J K. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective[J]. Critical Reviews in Food Science and Nutrition,2023,63(28):9262-9281. doi: 10.1080/10408398.2022.2067119
    [5]
    CHAE S H, KIM M S, KIM J H, et al. Nanobubble reactivity: evaluating hydroxyl radical generation (or lack thereof) under ambient conditions[J]. ACS ES& T Engineering,2023,3(10):1504-1510.
    [6]
    张亮, 周姝岑, 李攀, 等. 电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究[J]. 环境工程技术学报,2023,13(2):639-647.

    ZHANG L, ZHOU S C, LI P, et al. Study on treatment of high-salt printing and dyeing wastewater by electroflocculation-micro-nano-bubble ozone oxidation process[J]. Journal of Environmental Engineering Technology,2023,13(2):639-647.
    [7]
    方衡鑫, 胡钧, 张立娟. 固液界面纳米气层研究进展[J]. 环境工程技术学报,2022,12(4):1298-1309.

    FANG H X, HU J, ZHANG L J. Research advances in nano gas layers at the solid-liquid interface[J]. Journal of Environmental Engineering Technology,2022,12(4):1298-1309.
    [8]
    CHUENCHART W, KARKI R, SHITANAKA T, et al. Nanobubble technology in anaerobic digestion: a review[J]. Bioresource Technology,2021,329:124916. doi: 10.1016/j.biortech.2021.124916
    [9]
    DYETT B P, ZHANG X H. Accelerated formation of H2 nanobubbles from a surface nanodroplet reaction[J]. ACS Nano,2020,14(9):10944-10953. doi: 10.1021/acsnano.0c03059
    [10]
    张昭, 魏娅楠, 仪杨, 等. 水相中氢气浓度检测方法的建立[J]. 生物技术进展,2020,10(2):158-163.

    ZHANG Z, WEI Y N, YI Y, et al. Establishment of detection method of hydrogen concentration in aqueous phase[J]. Current Biotechnology,2020,10(2):158-163.
    [11]
    HE C, SONG H, LIU L, et al. Enhancement of methane production by anaerobic digestion of corn straw with hydrogen-nanobubble water[J]. Bioresource Technology,2022,344:126220. doi: 10.1016/j.biortech.2021.126220
    [12]
    LI L N, WANG J, JIANG K, et al. Preharvest application of hydrogen nanobubble water enhances strawberry flavor and consumer preferences[J]. Food Chemistry,2022,377:131953. doi: 10.1016/j.foodchem.2021.131953
    [13]
    ZHANG Y, FAN W H, LI X M, et al. Enhanced removal of free radicals by aqueous hydrogen nanobubbles and their role in oxidative stress[J]. Environmental Science & Technology,2022,56(21):15096-15107.
    [14]
    LIU S, LI J Y, OSHITA S, et al. Formation of a hydrogen radical in hydrogen nanobubble water and its effect on copper toxicity in Chlorella[J]. ACS Sustainable Chemistry & Engineering,2021,9(33):11100-11109.
    [15]
    KIM W K, HONG G, KIM Y H, et al. Mechanical strength and hydration characteristics of cement mixture with highly concentrated hydrogen nanobubble water[J]. Materials,2021,14(11):2735. doi: 10.3390/ma14112735
    [16]
    FAN W H, ZHANG Y, LIU S, et al. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water[J]. Journal of Hazardous Materials,2020,389:122155. doi: 10.1016/j.jhazmat.2020.122155
    [17]
    FAN Y J, LEI Z F, GUO Z T, et al. Enhanced solubilization of solid organics and methane production by anaerobic digestion of swine manure under nano-bubble water addition[J]. Bioresource Technology,2020,299:122512. doi: 10.1016/j.biortech.2019.122512
    [18]
    XIAO L, MIWA N. Hydrogen nano-bubble water suppresses ROS generation, adipogenesis, and interleukin-6 secretion in hydrogen-peroxide- or PMA-stimulated adipocytes and three-dimensional subcutaneous adipose equivalents[J]. Cells,2021,10(3):626. doi: 10.3390/cells10030626
    [19]
    龙庆云, 杨品, 韦桂欢. 顶空气相色谱法测定富氢水中的氢气[J]. 化学分析计量,2017,26(5):71-73.

    LONG Q Y, YANG P, WEI G H. Determination of hydrogen in hydrogen-rich water by headspace gas chromatography[J]. Chemical Analysis and Meterage,2017,26(5):71-73.
    [20]
    SEO T, KUROKAWA R, SATO B. A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum[J]. Medical Gas Research,2012,2:1. doi: 10.1186/2045-9912-2-1
    [21]
    LeBARON T W, SHARPE R. ORP should not be used to estimate or compare concentrations of aqueous H2: an in silico analysis and narrative synopsis[J]. Frontiers in Food Science and Technology,2022,2:1007001. doi: 10.3389/frfst.2022.1007001
    [22]
    DEAN J A. 兰氏化学手册[M].2版. 魏俊发,译.北京: 科学出版社, 2003.
    [23]
    XU W, WANG Y, HUANG Q, et al. The generation and stability of bulk nanobubbles by compression-decompression method: the role of dissolved gas[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,657:130488. doi: 10.1016/j.colsurfa.2022.130488
    [24]
    刘丽君, 张秀忠, 陆坤明. 水质分析中的检出限及其确定方法[J]. 净水技术,2003,22(1):37-39. doi: 10.3969/j.issn.1009-0177.2003.01.013

    LIU L J, ZHANG X Z, LU K M. Determination of the detecion limits of water quality analysis[J]. Water Purification Technology,2003,22(1):37-39. doi: 10.3969/j.issn.1009-0177.2003.01.013
    [25]
    姜林, 张丽娜, 钟茂生, 等. 统计方法在污染场地修复验收评估中的应用[J]. 环境科学研究,2013,26(8):873-878.

    JIANG L, ZHANG L N, ZHONG M S, et al. Case application of statistical analysis in remediation validation of contaminated sites[J]. Research of Environmental Sciences,2013,26(8):873-878.
    [26]
    黄建军, 顾平, 陆彩霞. 气相色谱法测定水相中微量氢气[J]. 分析试验室,2008,27(增刊2):369-372.
    [27]
    刘伯言, 贾修滨, 薛俊莉, 等. 顶空-气相色谱法与氢气微电极法用于富氢水中氢气含量的检测[J]. 食品工业科技,2023,44(2):352-357.

    LIU B Y, JIA X B, XUE J L, et al. Determination of hydrogen concentration in hydrogen-rich water by headspace gas chromatography and hydrogen microelectrode[J]. Science and Technology of Food Industry,2023,44(2):352-357.
    [28]
    LIU S, OSHITA S, THUYET D Q, et al. Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2018,34(39):11878-11885. ◇ doi: 10.1021/acs.langmuir.8b02440
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article Views(114) PDF Downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return