Citation: | WANG Y Y,HE Z T,KE Y,et al.Reaearch on environmental stability and heavy metals release characteristics of gypsum sludge from waste acid treatment[J].Journal of Environmental Engineering Technology,2024,14(3):1056-1065 doi: 10.12153/j.issn.1674-991X.20230769 |
In order to explore the environmental risk of waste acid gypsum sludge produced by the thermal copper refining process, the long-term stability and heavy metal release characteristics of waste acid gypsum sludge were investigated using the methods of simulated stockpiling, static erosion, and semi-dynamic erosion. The findings indicate that the waste acid gypsum sludge has a leaching concentration of As and Cd that is higher than the standard (1488.66 and 22.98 mg/L, respectively), with As reaching an acid-extractable state of 87.55% and Cd effective state exceeding 90%, which poses a serious environmental risk. The results of the simulated stockpiling demonstrate that shower loss and dust should be prevented because waste acid gypsum sludge poses a serious ecological risk level. As and Cd adhered to the surface of waste acid gypsum sludge are leached out in significant amounts by chemical reaction and diffusion during static and semi-dynamic erosion, resulting in concentrations that are all quite high. Among them, the leaching concentration of each element in the landfill simulation environment is significantly larger than that in other simulation environments, which requires special attention.
[1] |
牟兴兵, 杨雪, 杨大锦, 等. 还原熔炼铜渣回收铜钴的试验研究[J]. 云南冶金,2017,46(3):31-34. doi: 10.3969/j.issn.1006-0308.2017.03.008
MOU X B, YANG X, YANG D J, et al. The experimental study on copper, cobalt recovery by reduction of copper smelting slag[J]. Yunnan Metallurgy,2017,46(3):31-34. doi: 10.3969/j.issn.1006-0308.2017.03.008
|
[2] |
KULCZYCKA J, LELEK Ł, LEWANDOWSKA A, et al. Environmental impacts of energy-efficient pyrometallurgical copper smelting technologies: the consequences of technological changes from 2010 to 2050[J]. Journal of Industrial Ecology,2016,20(2):304-316. doi: 10.1111/jiec.12369
|
[3] |
ALEXANDER C, JOHTO H, LINDGREN M, et al. Comparison of environmental performance of modern copper smelting technologies[J]. Cleaner Environmental Systems,2021,3:100052. doi: 10.1016/j.cesys.2021.100052
|
[4] |
姚芝茂, 徐成, 赵丽娜. 铜冶炼工业固体废物综合环境管理方法研究[J]. 环境工程,2010,28(增刊1):230-234.
|
[5] |
WEN Y, BAO Z, WU X M. Research on recovery of valuable metals in waste acid from copper smelting flue gas acid-making and reduction and harmless treatment of solid wastes[C]//Extraction 2018. Cham: Springer, 2018: 303-312.
|
[6] |
LI X, ZHU X, QI X J, et al. Pyrolysis of arsenic-bearing gypsum sludge being substituted for calcium flux in smelting process[J]. Journal of Analytical and Applied Pyrolysis,2018,130:19-28. doi: 10.1016/j.jaap.2018.02.002
|
[7] |
唐巾尧, 王云燕, 徐慧, 等. 铜冶炼多源固废资源环境属性的解析[J]. 中南大学学报(自然科学版),2022,53(10):3811-3826.
TANG J Y, WANG Y Y, XU H, et al. Analysis of resources and environmental attributes of multisource solid wastes from copper smelting processes[J]. Journal of Central South University (Science and Technology),2022,53(10):3811-3826.
|
[8] |
代群威, 郭军, 陈思倩, 等. 铜冶炼烟尘中重金属的赋存状态及浸出分析[J]. 安全与环境学报,2022,22(5):2737-2742.
DAI Q W, GUO J, CHEN S Q, et al. Chemical speciation and leaching analysis of heavy metals in copper smelting fumes[J]. Journal of Safety and Environment,2022,22(5):2737-2742.
|
[9] |
李潇鼎, 田书磊, 吴宗儒等. 焚烧飞灰水热合成托贝莫来石过程中重金属的固化特性[J]. 环境工程技术学报, 2024, 14(1): 164-173.
LI X D, TIAN S L, WU Z R, et al. Characterization of heavy metals solidification during hydrothermal synthesis of tobermorite from incineration fly ash[J]. Journal of Environmental Engineering Technology, 14(1): 164-173.
|
[10] |
KEROLLI-MUSTAFA M, FAJKOVIĆ H, RONČEVIĆ S, et al. Assessment of metal risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure[J]. Journal of Geochemical Exploration,2015,148:161-168. doi: 10.1016/j.gexplo.2014.09.001
|
[11] |
寇兵, 袁英, 惠坤龙, 等. 垃圾渗滤液中溶解性有机质与重金属络合机制研究现状及展望[J]. 环境工程技术学报,2022,12(3):851-860.
KOU B, YUAN Y, HUI K L, et al. Current research situation and prospect of the complexation mechanism between dissolved organic matter and heavy metals in landfill leachate[J]. Journal of Environmental Engineering Technology,2022,12(3):851-860.
|
[12] |
李淑君. 垃圾焚烧飞灰中重金属浸出行为及磁学诊断[D]. 桂林: 广西师范大学, 2017.
|
[13] |
李鑫, 秦纪洪, 孙辉, 等. 炼油行业废催化剂中重金属源释放特征及其影响因素[J]. 环境化学,2021,40(4):1147-1156.
LI X, QIN J H, SUN H, et al. Leaching of heavy metals and their impacting factors from a spent catalyst in the refinery industry[J]. Environmental Chemistry,2021,40(4):1147-1156.
|
[14] |
宋学东, 李晓晨. 浸提时间对污泥中重金属浸出的影响[J]. 安徽农业科学,2008,36(9):3842-3843.
SONG X D, LI X C. Study on the effects of extraction time on the leachng of heavy metals in sewage sludge[J]. Journal of Anhui Agricultural Sciences,2008,36(9):3842-3843.
|
[15] |
史公初. 铜冶炼渣氧压硫酸浸出铜、分离铁的研究[D]. 昆明: 昆明理工大学, 2020.
|
[16] |
邝薇. 垃圾焚烧飞灰中重金属的污染特性、热特性及浸出动力学[D]. 桂林: 广西师范大学, 2012.
|
[17] |
CORMA A. Kinetics of the acid leaching of palygorskite: influence of the octahedral sheet composition[J]. Clay Minerals,1990,25(2):197-205. doi: 10.1180/claymin.1990.025.2.05
|
[18] |
白猛, 郑雅杰, 刘万宇, 等. 硫化砷渣的碱性浸出及浸出动力学[J]. 中南大学学报(自然科学版),2008,39(2):268-272.
BAI M, ZHENG Y J, LIU W Y, et al. Alkaline leaching and leaching kinetics of arsenic sulfide residue[J]. Journal of Central South University (Science and Technology),2008,39(2):268-272.
|
[19] |
王新宇. 黄铜矿浸出动力学及机理研究[D]. 武汉: 武汉理工大学, 2017.
|
[20] |
王翼文. 模拟酸雨条件下硫化矿尾矿中重金属的溶出特性及其固化研究[D]. 南宁: 广西大学, 2020.
|
[21] |
王希尹. 固废生产建材中重金属浸出方法研究[D]. 重庆: 重庆交通大学, 2018.
|
[22] |
廖亚龙, 彭志强, 周娟, 等. 高砷烟尘中砷的浸出动力学[J]. 四川大学学报(工程科学版),2015,47(3):200-206.
LIAO Y L, PENG Z Q, ZHOU J, et al. Research on kinetics of leaching of arsenic from dust containing high arsenic[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(3):200-206.
|
[23] |
王琳洁. 焚烧炉渣路用集料重金属浸出规律及数值模拟研究[D]. 杭州: 浙江工业大学, 2020.
|
[24] |
DICKINSON C F, HEAL G R. Solid–liquid diffusion controlled rate equations[J]. Thermochimica Acta,1999,340/341:89-103. ⊕ doi: 10.1016/S0040-6031(99)00256-7
|