Volume 14 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
ZHANG K Q,WANG X L,ZHAO J F,et al.Prediction of moisture content in municipal sludge drying process based on GA-BP-Garson model[J].Journal of Environmental Engineering Technology,2024,14(4):1330-1336 doi: 10.12153/j.issn.1674-991X.20230907
Citation: ZHANG K Q,WANG X L,ZHAO J F,et al.Prediction of moisture content in municipal sludge drying process based on GA-BP-Garson model[J].Journal of Environmental Engineering Technology,2024,14(4):1330-1336 doi: 10.12153/j.issn.1674-991X.20230907

Prediction of moisture content in municipal sludge drying process based on GA-BP-Garson model

doi: 10.12153/j.issn.1674-991X.20230907
  • Received Date: 2023-12-21
  • Accepted Date: 2024-04-01
  • Rev Recd Date: 2024-03-07
  • During the municipal sludge drying process, the detection of internal moisture poses challenges. To accurately predict the variation pattern of internal moisture during the hot air drying process of municipal sludge, Back Propagation (BP) neural network and GA-BP (Genetic Algorithm Back Propagation) neural network algorithms were utilized to establish moisture prediction models for the municipal sludge hot air drying process, with drying time, drying temperature, sludge layer thickness, and flow differential pressure as input variables, and moisture content as the output variable. Moreover, a sensitivity analysis was conducted on the GA-BP neural network to investigate the impact of the four input variables on the prediction outcomes. The results indicated that the coefficients of determination (R2) for the BP and GA-BP moisture prediction models on the test set were 0.999 55 and 0.999 64, with root mean square errors (RMSE) of 0.513 17 and 0.455 23, respectively, demonstrating that the GA-BP algorithm-based prediction model achieved better performance, accurately predicting the dynamic changes of moisture during the municipal sludge drying process. The sensitivity analysis revealed that drying time had the most significant impact on the GA-BP moisture prediction model. These findings could provide a theoretical basis for optimising sludge drying processes and procedures and offer a reference for the resource utilization of sludge.

     

  • loading
  • [1]
    ZHOU A, WANG X B, YU S L, et al. Process design and optimization on self-sustaining pyrolysis and carbonization of municipal sewage sludge[J]. Waste Management,2023,159:125-133. doi: 10.1016/j.wasman.2023.01.035
    [2]
    SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews,2017,80:888-913. doi: 10.1016/j.rser.2017.05.262
    [3]
    张钧羿, 魏建兵, 韩冬, 等. 沈阳市政污泥制备烧结砖的试验探究[J]. 环境工程技术学报,2023,13(3):1187-1193. doi: 10.12153/j.issn.1674-991X.20220469

    ZHANG J Y, WEI J B, HAN D, et al. Experimental study on the making of sintered brick using municipal sludge in Shenyang City[J]. Journal of Environmental Engineering Technology,2023,13(3):1187-1193. doi: 10.12153/j.issn.1674-991X.20220469
    [4]
    王毅斌, 冯敬武, 谭厚章, 等. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展,2023,42(2):985-999.

    WANG Y B, FENG J W, TAN H Z, et al. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge[J]. Fine Chemicals,2023,42(2):985-999.
    [5]
    ZHU Q X, SUN X F, GE S F, et al. Insights into the characteristics and mechanism of vacuum drying technology for municipal sludge processing[J]. Chemosphere,2023,310:136729. doi: 10.1016/j.chemosphere.2022.136729
    [6]
    ZHANG T, YAN Z W, WANG L Y, et al. Theoretical analysis and experimental study on a low-temperature heat pump sludge drying system[J]. Energy,2021,214:118985. doi: 10.1016/j.energy.2020.118985
    [7]
    周印羲, 石万, 李晓姣, 等. 污泥低温余热干化的模拟研究及参数优化[J]. 中国环境科学,2023,43(8):4099-4105. doi: 10.3969/j.issn.1000-6923.2023.08.026

    ZHOU Y X, SHI W, LI X J, et al. Simulation study and optimization of parameters for low temperature drying of sludge using waste heat[J]. China Environmental Science,2023,43(8):4099-4105. doi: 10.3969/j.issn.1000-6923.2023.08.026
    [8]
    吴文庆. 污泥低温干化技术与模型模拟研究进展[J]. 环境工程,2023,41(增刊2):644-650.

    WU W Q. The research progress of sludge low temperature drying technology and model simulation[J]. Environmental Engineering,2023,41(Suppl 2):644-650.
    [9]
    辛旺, 宋永会, 张亚迪, 等. 污泥基碳吸附材料的制备及其吸附性能研究进展[J]. 环境工程技术学报,2017,7(3):306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044

    XIN W, SONG Y H, ZHANG Y D, et al. Research progress of preparation of sewage sludge-based carbonaceous adsorbents and their adsorption characteristics[J]. Journal of Environmental Engineering Technology,2017,7(3):306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044
    [10]
    BHAGYA RAJ G V S, DASH K K. Comprehensive study on applications of artificial neural network in food process modeling[J]. Critical Reviews in Food Science and Nutrition,2022,62(10):2756-2783. doi: 10.1080/10408398.2020.1858398
    [11]
    HUANG Y W, CHEN M Q. Artificial neural network modeling of thin layer drying behavior of municipal sewage sludge[J]. Measurement,2015,73:640-648. doi: 10.1016/j.measurement.2015.06.014
    [12]
    ZHANG Y G, PAN G F, CHEN B, et al. Short-term wind speed prediction model based on GA-ANN improved by VMD[J]. Renewable Energy,2020,156:1373-1388. doi: 10.1016/j.renene.2019.12.047
    [13]
    SUN T S, LING F. Prediction method of wheat moisture content in the hot air drying process based on backpropagation neural network optimized by genetic algorithms[J]. Journal of Food Processing and Preservation,2022,46(6):e16565.
    [14]
    FABANI M P, CAPOSSIO J P, ROMÁN M C, et al. Producing non-traditional flour from watermelon rind pomace: artificial neural network (ANN) modeling of the drying process[J]. Journal of Environmental Management,2021,281:111915. doi: 10.1016/j.jenvman.2020.111915
    [15]
    YANG T Q, ZHENG X, VIDYARTHI S K, et al. Artificial neural network modeling and genetic algorithm multiobjective optimization of process of drying-assisted walnut breaking[J]. Foods,2023,12(9):1897. doi: 10.3390/foods12091897
    [16]
    BHAGYA RAJ G V S, DASH K K. Microwave vacuum drying of dragon fruit slice: artificial neural network modelling, genetic algorithm optimization, and kinetics study[J]. Computers and Electronics in Agriculture,2020,178:105814. doi: 10.1016/j.compag.2020.105814
    [17]
    黄艳琴, 甄宇航, 王晨州, 等. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报,2023,37(10):29-34.

    HUANG Y Q, ZHEN Y H, WANG C Z, et al. Research progress on pyrolysis and resource utilization of municipal sewage sludge in context of 'peak carbon dioxide emissions and carbon neutrality'[J]. Materials Reports,2023,37(10):29-34.
    [18]
    杨俊祺, 范晓军, 赵跃华, 等. 基于PSO-BP神经网络的山西省碳排放预测[J]. 环境工程技术学报,2023,13(6):2016-2024. doi: 10.12153/j.issn.1674-991X.20230190

    YANG J Q, FAN X J, ZHAO Y H, et al. Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network[J]. Journal of Environmental Engineering Technology,2023,13(6):2016-2024. doi: 10.12153/j.issn.1674-991X.20230190
    [19]
    SATORABI M, SALEHI F, RASOULI M. The influence of xanthan and balangu seed gums Coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling[J]. International Journal of Fruit Science,2021,21(1):468-480. doi: 10.1080/15538362.2021.1898520
    [20]
    MING J L K, ANUAR M S, HOW M S, et al. Development of an artificial neural network utilizing particle swarm optimization for modeling the spray drying of coconut milk[J]. Foods,2021,10(11):2708. □ doi: 10.3390/foods10112708
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article Views(72) PDF Downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return