Volume 14 Issue 3
May  2024
Turn off MathJax
Article Contents
QIN H J,SHI Q Y,ZHI G Q,et al.Phytoplankton community characteristics and environmental impact factors in Tanglang River-Pudu River basin[J].Journal of Environmental Engineering Technology,2024,14(3):867-878 doi: 10.12153/j.issn.1674-991X.20230909
Citation: QIN H J,SHI Q Y,ZHI G Q,et al.Phytoplankton community characteristics and environmental impact factors in Tanglang River-Pudu River basin[J].Journal of Environmental Engineering Technology,2024,14(3):867-878 doi: 10.12153/j.issn.1674-991X.20230909

Phytoplankton community characteristics and environmental impact factors in Tanglang River-Pudu River basin

doi: 10.12153/j.issn.1674-991X.20230909
  • Received Date: 2023-12-21
  • Phytoplankton and environmental factors are important components of water ecology, but there are currently few studies on the relationship between phytoplankton and environmental impact factors in plateau rivers. Therefore, Tanglang River-Pudu River basin in the Yunnan-Guizhou Plateau was taken as the research object, and the phytoplankton and water bodies in the river basin were sampled and investigated from April to November (dry season, wet season, and level season) in 2022. The diversity index, comprehensive trophic state index, and redundancy analysis (RDA) were used to analyze the water quality of Tanglang River-Pudu River basin and the relationship between phytoplankton and environmental factors, and to explore the characteristics of phytoplankton communities in the basin and their relationship with environmental factors. The results showed that a total of 261 species belonging to 128 genera and 8 phyla of phytoplankton were detected, mainly including Cyanophyta, Chlorophyta and Bacillariophyta. Aphanizomenon flos-aquae was the dominant species throughout the year. The spatial and temporal changes of phytoplankton community structure and diversity were significant. Compared with the dry season and the level season, the cell density in the wet season was less and the biodiversity was higher. The cell density in the mainstream of the Tanglang River was higher than that in other basins. The comprehensive nutritional status index indicated that the whole basin was at the level of medium nutrition to heavy eutrophication, and the eutrophication level was the severest in the mainstream of the Tanglang River . The RDA analysis revealed that different sub-watersheds had different dominant factors influencing the community structure of phytoplankton. For the mainstream of the Tanglang River, the dominant factors were permanganate index (CODMn) and pH. For the tributary of the Tanglang River, the dominant factor was CODMn. For the mainstream of the Pudu River, the dominant factors were flow (Q) and nitrate nitrogen (${\mathrm{NO}}_3^- $-N). For the tributary of the Pudu River, the dominant factor was water temperature (WT).

     

  • loading
  • [1]
    ZHANG X J, WANG G Q, TAN Z X, et al. Effects of ecological protection and restoration on phytoplankton diversity in impounded lakes along the eastern route of China’s South-to-North Water Diversion Project[J]. Science of the Total Environment,2021,795:148870.
    [2]
    BORICS G, GÖRGÉNYI J, GRIGORSZKY I, et al. The role of phytoplankton diversity metrics in shallow lake and river quality assessment[J]. Ecological Indicators,2014,45:28-36.
    [3]
    CUI L, LU X X, DONG Y L, et al. Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks[J]. Ecotoxicology and Environmental Safety,2018,159:85-93.
    [4]
    MACHADO K B, TARGUETA C P, ANTUNES A M, et al. Diversity patterns of planktonic microeukaryote communities in tropical floodplain lakes based on 18S rDNA gene sequences[J]. Journal of Plankton Research,2019,41(3):241-256.
    [5]
    李博, 苏巍, 黄涛, 等. 金沙江下游浮游植物群落生态特征及与环境因子关系[J]. 水生态学杂志,2023,44(4):18-28.

    LI B, SU W, HUANG T, et al. Phytoplankton community ecology and its relationship with environmental factors in the lower Jinsha River[J]. Journal of Hydroecology,2023,44(4):18-28.
    [6]
    杨宋琪, 祖廷勋, 王怀斌, 等. 黑河张掖段浮游植物群落结构及其与环境因子的关系[J]. 湖泊科学,2019,31(1):159-170. doi: 10.18307/2019.0115

    YANG S Q, ZU T X, WANG H B, et al. Relationship between the structure of phytoplankton community and environmental factors in the Zhangye section of Heihe River[J]. Journal of Lake Sciences,2019,31(1):159-170. doi: 10.18307/2019.0115
    [7]
    王振方, 张玮, 杨丽, 等. 异龙湖不同湖区浮游植物群落特征及其与环境因子的关系[J]. 环境科学,2019,40(5):2249-2257.

    WANG Z F, ZHANG W, YANG L, et al. Characteristics of phytoplankton community and its relationship with environmental factors in different regions of Yilong Lake, Yunnan Province, China[J]. Environmental Science,2019,40(5):2249-2257.
    [8]
    王东秀, 李娅萍, 王红梅, 等. 滇池浮游植物群落时空变化特征及影响因子分析[J]. 四川环境,2022,41(4):186-194.

    WANG D X, LI Y P, WANG H M, et al. Analysis of temporal and spatial variation characteristics and influencing factors of phytoplankton community in Dianchi Lake[J]. Sichuan Environment,2022,41(4):186-194.
    [9]
    段聪. 牛栏江鱼类保护区核心区江段浮游生物群落结构研究及水质评价[D]. 重庆: 西南大学, 2020.
    [10]
    俞茜, 陈永灿, 刘昭伟. 螳螂川蓝藻藻细胞密度和物种丰度的空间变化[J]. 水力发电学报,2016,35(10):58-66.

    YU Q, CHEN Y C, LIU Z W. Longitudinal variations in Cyanobacteria abundance and richness along Tanglang River[J]. Journal of Hydroelectric Engineering,2016,35(10):58-66.
    [11]
    俞茜. 普渡河污染源解析及浮游藻类变化特征[D]. 北京: 清华大学, 2015.
    [12]
    张国正. 基于AEM3D模型对滇池蓝藻水华的模拟[D]. 苏州: 苏州科技大学, 2021.
    [13]
    蒋尖尖, 胡文, 叶春, 等. 近60年滇池水生态系统演替及驱动因子[J]. 环境工程技术学报,2023,13(2):541-551.

    JIANG J J, HU W, YE C, et al. Succession and driving factors of Lake Dianchi aquatic ecosystem in the past 60 years[J]. Journal of Environmental Engineering Technology,2023,13(2):541-551.
    [14]
    陈永灿, 俞茜, 朱德军, 等. 河流中浮游藻类生长的可能影响因素研究进展与展望[J]. 水力发电学报,2014,33(4):186-195.

    CHEN Y C, YU Q, ZHU D J, et al. Possible influencing factors on phytoplankton growth and decay in rivers: review and perspective[J]. Journal of Hydroelectric Engineering,2014,33(4):186-195.
    [15]
    章宗涉黄祥飞. 淡水浮游生物研究方法[M]. 北京: 科学出版社, 1991.
    [16]
    魏印心, 胡鸿钧. 中国淡水藻类系统、分类及生态[M]. 北京: 科学出版社, 2006.
    [17]
    张潇月. 长江下游干流浮游植物多样性研究[D]. 上海: 上海师范大学, 2018.
    [18]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 88-284.
    [19]
    吴天浩, 刘劲松, 邓建明, 等. 大型过水性湖泊: 洪泽湖浮游植物群落结构及其水质生物评价[J]. 湖泊科学,2019,31(2):440-448. doi: 10.18307/2019.0213

    WU T H, LIU J S, DENG J M, et al. Community structure of phytoplankton and bioassessment of water quality in a large water-carrying lake, Lake Hongze[J]. Journal of Lake Sciences,2019,31(2):440-448. doi: 10.18307/2019.0213
    [20]
    殷守敬, 吴传庆, 王晨, 等. 综合遥感与地面观测的巢湖水体富营养化评价[J]. 中国环境监测,2018,34(1):157-164.

    YIN S J, WU C Q, WANG C, et al. Eutrophication assessment of Chaohu Lake using remote sensing and in-situ data[J]. Environmental Monitoring in China,2018,34(1):157-164.
    [21]
    宋勇军, 戚菁, 刘立恒, 等. 程海湖夏冬季浮游植物群落结构与富营养化状况研究[J]. 环境科学学报,2019,39(12):4106-4113.

    SONG Y J, QI J, LIU L H, et al. Eutrophication status and phytoplankton community structure in Chenghai Lake in summer and winter[J]. Acta Scientiae Circumstantiae,2019,39(12):4106-4113.
    [22]
    刘足根, 张柱, 张萌, 等. 赣江流域浮游植物群落结构与功能类群划分[J]. 长江流域资源与环境,2012,21(3):375-384.

    LIU Z G, ZHANG Z, ZHANG M, et al. Classification of functional groups and community structure of phytoplankton in the Ganjiang River[J]. Resources and Environment in the Yangtze Basin,2012,21(3):375-384.
    [23]
    郝媛媛. 黑河流域浮游植物群落特征与环境因子的关系研究[D]. 兰州: 兰州大学, 2013.
    [24]
    洪松, 陈静生. 中国河流水生生物群落结构特征探讨[J]. 水生生物学报,2002,26(3):295-305. doi: 10.3321/j.issn:1000-3207.2002.03.014

    HONG S, CHEN J S. Structure characteristics of aquatic community from the main rivers in China[J]. Acta Hydrobiologica Sinica,2002,26(3):295-305. doi: 10.3321/j.issn:1000-3207.2002.03.014
    [25]
    杨洪允, 周雯, 乔永民, 等. 洱海浮游植物群落结构及其与环境因子分析[J]. 环境科学与技术,2021,44(7):123-132.

    YANG H Y, ZHOU W, QIAO Y M, et al. Community structure of phytoplankton and its relationship with environmental factors in Erhai Lake[J]. Environmental Science & Technology,2021,44(7):123-132.
    [26]
    杨鸿雁, 杨劭, 刘毅, 等. 云贵高原富营养化湖泊杞麓湖浮游生物群落的季节性演替及其驱动因子分析[J]. 环境科学研究,2020,33(4):876-884.

    YANG H Y, YANG S, LIU Y, et al. Seasonal succession of plankton community and driving factors in hypereutrophic Qilu Lake (Yunnan-Guizhou Plateau)[J]. Research of Environmental Sciences,2020,33(4):876-884.
    [27]
    江源, 彭秋志, 廖剑宇, 等. 浮游藻类与河流生境关系研究进展与展望[J]. 资源科学,2013,35(3):461-472.

    JIANG Y, PENG Q Z, LIAO J Y, et al. Advances and prospects for research into phytoplankton and river habitats[J]. Resources Science,2013,35(3):461-472.
    [28]
    彭朵, 蒋小明, 孙兴, 等. 青海湖入湖河流浮游植物群落时空格局及其影响因子[J]. 环境科学学报,2024,44(1):491-502.

    PENG D, JIANG X M, SUN X, et al. Spatio-temporal patterns and influencing factors of phytoplankton communities in the main inflow rivers of Qinghai Lake[J]. Acta Scientiae Circumstantiae,2024,44(1):491-502.
    [29]
    HILTON J, O’HARE M, BOWES M J, et al. How green is my river: a new paradigm of eutrophication in rivers[J]. Science of the Total Environment,2006,365(1/2/3):66-83.
    [30]
    YU Q, CHEN Y C, LIU Z W, et al. Longitudinal variations of phytoplankton compositions in lake-to-river systems[J]. Limnologica,2017,62:173-180.
    [31]
    许海. 河湖水体浮游植物群落生态特征与富营养化控制因子研究[D]. 南京: 南京农业大学, 2008.
    [32]
    KOSIBA J, KRZTOŃ W, KOREIVIENÉ J, et al. Interactions between ciliate species and Aphanizomenon flos-aquae vary depending on the morphological form and biomass of the diazotrophic Cyanobacterium[J]. International Journal of Environmental Research and Public Health,2022,19(22):15097.
    [33]
    雷安平, 施之新, 魏印心. 武汉东湖浮游藻类物种多样性的研究[J]. 水生生物学报, 2003, 27(2): 179-184.

    LEI A P, SHI Z X, WEI Y X. Diversity of the phytoplankton in Donghu Lake, Wuhan[J]. Acta Hydrobiologica Sinica, 2003, 27(2):179-184.
    [34]
    熊金林. 不同营养水平湖泊浮游生物和底栖动物群落多样性的研究[D]. 武汉: 华中科技大学, 2005.
    [35]
    赵思琪, 范垚城, 代嫣然, 等. 水体富营养化改善过程中浮游植物群落对非生物环境因子的响应: 以武汉东湖为例[J]. 湖泊科学,2019,31(5):1310-1319.

    ZHAO S Q, FAN Y C, DAI Y R, et al. Responses of phytoplankton community to abiotic environmental variables with the mitigation of eutrophication: a case study of Donghu Lake, Wuhan City[J]. Journal of Lake Sciences,2019,31(5):1310-1319.
    [36]
    BOWES M J, GOZZARD E, JOHNSON A C, et al. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames Basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass[J]. Science of the Total Environment,2012,426:45-55.
    [37]
    JIANG Y J, HE W, LIU W X, et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese Lake (Lake Chaohu)[J]. Ecological Indicators,2014,40:58-67.
    [38]
    李立群, 王艳, 王彪, 等. 2009—2021 年夏季长江口海域浮游生物群落结构时空分布特征及其影响因素研究[J]. 环境科学研究,2024,37(2):233-245.

    LI L Q, WANG Y, WANG B, et al. Spatiotemporal distribution of plankton community structure in the Yangtze River Estuary in the summer of 2009-2021 and its influencing factors[J]. Research of Environmental Sciences,2024,37(2):233-245.
    [39]
    君珊, 王东波, 周健华, 等. 拉萨河流域浮游植物群落结构特征及与环境因子的关系[J]. 生态学报,2019,39(3):787-798.

    JUN S, WANG D B, ZHOU J H, et al. Community structures of phytoplankton and its relationship with environmental factors in the Lhasa River[J]. Acta Ecologica Sinica,2019,39(3):787-798.
    [40]
    于洋, 彭福利, 孙聪, 等. 典型湖泊水华特征及相关影响因素分析[J]. 中国环境监测,2017,33(2):88-94.

    YU Y, PENG F L, SUN C, et al. Analysis on the characteristics and impact factors of water bloom in the lake[J]. Environmental Monitoring in China,2017,33(2):88-94.
    [41]
    刘俊鹏, 屈亮, 刘信勇, 等. 不同营养条件对地表水藻类生长的影响[J]. 环境工程,2016,34(增刊1):407-410.

    LIU J P, QU L, LIU X Y, et al. Effects of different nutrient conditions on the growth of algae in surface water[J]. Environmental Engineering,2016,34(Suppl 1):407-410.
    [42]
    陈瑞弘, 李飞鹏, 张海平, 等. 面向流量管理的水动力对淡水藻类影响的概念机制[J]. 湖泊科学,2015,27(1):24-30. doi: 10.18307/2015.0103

    CHEN R H, LI F P, ZHANG H P, et al. Conceptual mechanism of hydrodynamic impacts on freshwater algae for flow management[J]. Journal of Lake Sciences,2015,27(1):24-30. doi: 10.18307/2015.0103
    [43]
    江艳, 甘旭华, 唐欣昀, 等. 氮磷营养因子对赤潮异弯藻生长的影响[J]. 应用生态学报,2006,17(3):3557-3559.

    JIANG Y, GAN X H, TANG X Y, et al. Effects of nutrients nitrogen and phosphorus on Heterosigma akashiwo growth[J]. Chinese Journal of Applied Ecology,2006,17(3):3557-3559.
    [44]
    李艳红, 王雪漫, 徐珺恺, 等. 鄱阳湖丰水期氮素分布特征及其对藻类的影响[J]. 水生态学杂志,2022,43(4):16-22.

    LI Y H, WANG X M, XU J K, et al. Nitrogen distribution and its influence on the algae community of Poyang Lake in the wet season[J]. Journal of Hydroecology,2022,43(4):16-22.
    [45]
    张欢, 张佳磊, 刘德富, 等. 三峡水库水温对浮游植物群落演替和多样性的影响[J]. 环境工程技术学报,2017,7(2):134-139.

    ZHANG H, ZHANG J L, LIU D F, et al. The influence of water temperature on phytoplankton community succession and diversity in Three Gorges Reservoir[J]. Journal of Environmental Engineering Technology,2017,7(2):134-139.
    [46]
    NALEWAJKO C, MURPHY T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J]. Limnology,2001,2(1):45-48.
    [47]
    邓建明, 蔡永久, 陈宇炜, 等. 洪湖浮游植物群落结构及其与环境因子的关系[J]. 湖泊科学,2010,22(1):70-78. doi: 10.18307/2010.0110

    DENG J M, CAI Y J, CHEN Y W, et al. Structure of phytoplankton community and its relationship with environment factors in Lake Honghu[J]. Journal of Lake Sciences,2010,22(1):70-78. ⊗ doi: 10.18307/2010.0110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(123) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return