Volume 14 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
ZHANG Y T,HUANG Y,HAN C D,et al.Permeability of nanobubbles-graphene oxide membrane and its dye retention performance[J].Journal of Environmental Engineering Technology,2024,14(4):1112-1120 doi: 10.12153/j.issn.1674-991X.20230929
Citation: ZHANG Y T,HUANG Y,HAN C D,et al.Permeability of nanobubbles-graphene oxide membrane and its dye retention performance[J].Journal of Environmental Engineering Technology,2024,14(4):1112-1120 doi: 10.12153/j.issn.1674-991X.20230929

Permeability of nanobubbles-graphene oxide membrane and its dye retention performance

doi: 10.12153/j.issn.1674-991X.20230929
  • Received Date: 2023-12-31
  • Accepted Date: 2024-06-08
  • Rev Recd Date: 2024-03-28
  • Graphene oxide (GO) membranes were widely used for dyestuffs separation in complex wastewater due to their excellent physical and chemical properties and unique water channeling. The formation of nanobubbles-graphene oxide (NBs-GO) membranes by adsorption of nanobubbles (NBs) onto GO was expected to improve the dye separation performance of the membranes. The NBs-GO membranes were used to treat dyestuffs wastewater simulated by methylene blue solution. The water permeability, retention rate and stability of the membranes were determined, and the effects of factors such as dyestuff type and concentration, membrane thickness, and GO preparation conditions on the membrane performance were investigated. The results showed that the water permeability of the NBs-GO membrane was 50.8% higher than that of the traditional GO membrane, and the retention rate of methylene blue was maintained at 99.88%, which was superior to that of the traditional GO membrane. In addition, the NBs-GO membrane showed good stability within 72 h, and the retention rate was always maintained above 90%. The NBs-GO membranes maintained excellent water permeation performance even when the dyestuffs type, concentration and membrane thickness were changed. Therefore, the introduction of nanobubbles provides a new idea to improve the dyestuffs separation efficiency of GO membranes, which shows great potential in the treatment of dyestuffs wastewater, and this discovery is expected to open up a new path for the advancement of dye wastewater treatment technology.

     

  • loading
  • [1]
    TKACZYK A, MITROWSKA K, POSYNIAK A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review[J]. Science of the Total Environment,2020,717:137222. doi: 10.1016/j.scitotenv.2020.137222
    [2]
    朱思佳. 传统染料在纺织工艺上的艺术价值[J]. 纺织报告,2023,42(5):34-36.

    ZHU S J. Artistic value of traditional dyes in textile technology[J]. Textile Reports,2023,42(5):34-36.
    [3]
    成杰, 吴安理, 杨如娥, 等. 液相色谱-串联质谱法检测食品中合成染料的研究进展[J]. 食品安全质量检测学报,2021,12(20):7986-7994.

    CHENG J, WU A L, YANG R E, et al. Recent progress on detection of synthetic dyes in food by liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality,2021,12(20):7986-7994.
    [4]
    张博, 吴桐, 赵富华, 等. 天然染料在造纸中应用的研究进展[J]. 纸和造纸,2010,29(5):42-44.

    ZHANG B, WU T, ZHAO F H, et al. Research progress on the application of natural dyes in paper industry[J]. Paper and Paper Making,2010,29(5):42-44.
    [5]
    杨淡梅, 石兴红, 罗金梅, 等. 高效液相色谱法同时检测染发类化妆品中5种限用染料[J]. 日用化学工业,2022,52(1):103-108.

    YANG D M, SHI X H, LUO J M, et al. Simultaneous determination of 5 restricted dyes in hair dyeing cosmetics by high performance liquid chromatography[J]. China Surfactant Detergent & Cosmetics,2022,52(1):103-108.
    [6]
    LIN J Y, YE W Y, XIE M, et al. Environmental impacts and remediation of dye-containing wastewater[J]. Nature Reviews Earth & Environment,2023,4(11):785-803.
    [7]
    LIN J Y, LIN F, CHEN X Y, et al. Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge[J]. Industrial & Engineering Chemistry Research,2019,58(25):11003-11012.
    [8]
    周鹏. 膜法染料废水处理工艺研究[J]. 冶金管理,2020(9):204.
    [9]
    王九思. ClO2氧化-活性炭吸附法处理染色废水的试验研究[J]. 环境科学研究,2001,14(5):40-42.

    WANG J S. Study on the treatment of dyeing wastewater by ClO2 oxidation-activated carbon adsorption process[J]. Research of Environmental Sciences,2001,14(5):40-42.
    [10]
    XIA X M, ZHOU F, YU R S, et al. Ultrahigh water permeance of reduced graphene oxide membrane for radioactive liquid waste treatment[J]. Membranes,2021,11(11):809. doi: 10.3390/membranes11110809
    [11]
    YANG R J, FAN Y, YU R S, et al. Robust reduced graphene oxide membranes with high water permeance enhanced by K+ modification[J]. Journal of Membrane Science,2021,635:119437. doi: 10.1016/j.memsci.2021.119437
    [12]
    刘建波, 张盼月, 曾光明, 等. 改性活性炭对硫氰酸钠膜分离浓水脱杂过程的影响因素[J]. 环境科学研究,2016,29(6):863-869.

    LIU J B, ZHANG P Y, ZENG G M, et al. Influence factors analysis on the treatment of NaSCN concentrated effluent by modified activated carbon[J]. Research of Environmental Sciences,2016,29(6):863-869.
    [13]
    ZHANG L L, DAI F F, YI R B, et al. Effect of physical and chemical structures of graphene oxide on water permeation in graphene oxide membranes[J]. Applied Surface Science,2020,520:146308. doi: 10.1016/j.apsusc.2020.146308
    [14]
    DAI F F, YU R S, YI R B, et al. Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection[J]. Chemical Communications,2020,56(95):15068-15071. doi: 10.1039/D0CC06302A
    [15]
    JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science,2014,343(6172):752-754. doi: 10.1126/science.1245711
    [16]
    刘倩倩. 交联改性氧化石墨烯基复合膜的制备、结构调控及其在分离领域的应用[D]. 淄博: 山东理工大学, 2022.
    [17]
    TAKAHASHI M, SHIRAI Y, SUGAWA S. Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water[J]. Langmuir,2021,37(16):5005-5011. doi: 10.1021/acs.langmuir.1c00469
    [18]
    黄青, 刘爱荣, 张立娟. 微纳米气泡特性及在土壤环境改善中的应用[J]. 环境工程技术学报,2022,12(4):1324-1332.

    HUANG Q, LIU A R, ZHANG L J. Characteristics of micro-nanobubbles and their applications in soil environment improvement[J]. Journal of Environmental Engineering Technology,2022,12(4):1324-1332.
    [19]
    程莹, 臧纪, 宋骏杰, 等. 基于臭氧微纳米气泡的O3-H2O2体系降解有机污染物的效能与影响因素[J]. 环境工程技术学报,2022,12(4):1317-1323.

    CHENG Y, ZANG J, SONG J J, et al. Degradation efficiency and influencing factors of organic contaminants in O3-H2O2 system based on ozone micro-nanobubbles[J]. Journal of Environmental Engineering Technology,2022,12(4):1317-1323.
    [20]
    元妙新, 占升, 张欣, 等. 氧气微纳米气泡在地下水原位修复中的应用研究[J]. 环境工程技术学报,2022,12(4):1342-1349.

    YUAN M X, ZHAN S, ZHANG X, et al. Research on the application of oxygen micro-nanobubbles in situ remediation of groundwater[J]. Journal of Environmental Engineering Technology,2022,12(4):1342-1349.
    [21]
    HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials,2013,23(29):3693-3700. doi: 10.1002/adfm.201202601
    [22]
    ZHANG Z J, XIAO X, ZHOU Y H, et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration[J]. ACS Nano,2021,15(8):13178-13187. doi: 10.1021/acsnano.1c02719
    [23]
    LEI Y T, OSSONON B D, CHEN J Y, et al. Electrochemical characterization of graphene-type materials obtained by electrochemical exfoliation of graphite[J]. Journal of Electroanalytical Chemistry,2021,887:115084. doi: 10.1016/j.jelechem.2021.115084
    [24]
    ZHANG W H, YIN M J, ZHAO Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology,2021,16(3):337-343. doi: 10.1038/s41565-020-00833-9
    [25]
    WANG L, WANG N X, LI J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Separation and Purification Technology,2016,160:123-131. doi: 10.1016/j.seppur.2016.01.024
    [26]
    JIANG Y T, LIANG P, TANG M J, et al. A high-throughput screening permeability separator with high catalytic conversion kinetics for Li–S batteries[J]. Journal of Materials Chemistry A,2022,10(41):22080-22092. doi: 10.1039/D2TA04592C
    [27]
    LOW Z X, JI J, BLUMENSTOCK D, et al. Fouling resistant 2D boron nitride nanosheet–PES nanofiltration membranes[J]. Journal of Membrane Science,2018,563:949-956. doi: 10.1016/j.memsci.2018.07.003
    [28]
    YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials,2017,16(12):1198-1202. doi: 10.1038/nmat5025
    [29]
    LIU L F, ZHOU Y S, XUE J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification[J]. AIChE Journal,2019,65(10):e16699. doi: 10.1002/aic.16699
    [30]
    NIE L N, CHUAH C Y, BAE T H, et al. Graphene-based advanced membrane applications in organic solvent nanofiltration[J]. Advanced Functional Materials,2021,31(6):2006949. ◇ doi: 10.1002/adfm.202006949
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(141) PDF Downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return