Volume 14 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
JIANG M Y,GUO R N,GUO C S,et al.Efficiency and mechanism of oxidative degradation of typical UV filters by ozone micro-nano bubbles[J].Journal of Environmental Engineering Technology,2024,14(4):1121-1129 doi: 10.12153/j.issn.1674-991X.20240039
Citation: JIANG M Y,GUO R N,GUO C S,et al.Efficiency and mechanism of oxidative degradation of typical UV filters by ozone micro-nano bubbles[J].Journal of Environmental Engineering Technology,2024,14(4):1121-1129 doi: 10.12153/j.issn.1674-991X.20240039

Efficiency and mechanism of oxidative degradation of typical UV filters by ozone micro-nano bubbles

doi: 10.12153/j.issn.1674-991X.20240039
  • Received Date: 2024-01-18
  • Accepted Date: 2024-04-23
  • Rev Recd Date: 2024-04-03
  • Ozone micro-nano bubbles are known for their beneficial traits, such as high ozone utilization and mass transfer rates. In this study, ozone micro-nano bubbles were utilized to degrade the ultraviolet filter, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). The characteristics of ozone micro-nano bubbles and their degradation mechanism on DHHB were studied by varying dissolved gas modes and liquid-phase ozone concentrations, and the impacts of temperature, pH, natural organic matter and different ion strengths on the degradation efficiency were explored. The results indicated that the oxidation efficiency of ozone micro-nano bubbles exceeded that of conventional ozone bubbles. The concentration of liquid-phase ozone, hydroxyl radicals, hydroxyl radical yield, and ozone utilization rate in the system increased significantly. The DHHB removal rate achieved 87.3% within 60 min at 25 °C, with a gas-phase ozone concentration of 10.22 mg/L and pH of 11. The removal effectiveness was 2.02 times greater than that of traditional ozone bubbles. Natural organic matter and bicarbonate ions inhibited the degradation of DHHB to different extents. According to the quenching test, 65.2% of DHHB degradation was contributed by hydroxyl radicals and 14.9% by superoxide radicals. This study confirms the feasibility of utilizing an ozone micro-nano bubble system for treating DHHB in water, and offers a theoretical basis for the practical implementation of this system.

     

  • loading
  • [1]
    CHISVERT A, BENEDÉ J L, SALVADOR A. Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques: a review[J]. Analytica Chimica Acta,2018,1034:22-38. doi: 10.1016/j.aca.2018.05.059
    [2]
    SHAATH N A. Ultraviolet filters[J]. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2010, 9(4): 464-469.
    [3]
    BALMER M E, BUSER H R, MÜLLER M D, et al. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes[J]. Environmental Science & Technology,2005,39(4):953-962.
    [4]
    LI W H, MA Y M, GUO C S, et al. Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant[J]. Water Research,2007,41(15):3506-3512. doi: 10.1016/j.watres.2007.05.039
    [5]
    SILVIA DÍAZ-CRUZ M, LLORCA M, BARCELÓ D, et al. Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment[J]. TrAC Trends in Analytical Chemistry,2008,27(10):873-887. doi: 10.1016/j.trac.2008.08.012
    [6]
    PLAGELLAT C, KUPPER T, FURRER R, et al. Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland[J]. Chemosphere,2006,62(6):915-925. doi: 10.1016/j.chemosphere.2005.05.024
    [7]
    CALAFAT A M, WONG L Y, YE X Y, et al. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003: 2004[J]. Environmental Health Perspectives,2008,116(7):893-897. doi: 10.1289/ehp.11269
    [8]
    BUSER H R, BALMER M E, SCHMID P, et al. Occurrence of UV filters 4-methylbenzylidene camphor and octocrylene in fish from various Swiss Rivers with inputs from wastewater treatment plants[J]. Environmental Science & Technology,2006,40(5):1427-1431.
    [9]
    SØEBORG T, GANDERUP N C, KRISTENSEN J H, et al. Distribution of the UV filter 3-benzylidene camphor in rat following topical application[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2006,834(1/2):117-121.
    [10]
    VIDAL M T, CHISVERT A, SALVADOR A. Sensitive sequential-injection system for the determination of 2-phenylbenzimidazole-5-sulphonic acid in human urine samples using on-line solid-phase extraction coupled with fluorimetric detection[J]. Talanta,2003,59(3):591-599. doi: 10.1016/S0039-9140(02)00571-4
    [11]
    BLÜTHGEN N, ZUCCHI S, FENT K. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio)[J]. Toxicology and Applied Pharmacology,2012,263(2):184-194. doi: 10.1016/j.taap.2012.06.008
    [12]
    HENEWEER M, MUUSSE M, van den BERG M, et al. Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells[J]. Toxicology and Applied Pharmacology,2005,208(2):170-177. doi: 10.1016/j.taap.2005.02.006
    [13]
    SCHLUMPF M, SCHMID P, DURRER S, et al. Endocrine activity and developmental toxicity of cosmetic UV filters: an update[J]. Toxicology,2004,205(1/2):113-122.
    [14]
    RODIL R, MOEDER M, ALTENBURGER R, et al. Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water[J]. Analytical and Bioanalytical Chemistry,2009,395(5):1513-1524. doi: 10.1007/s00216-009-3113-1
    [15]
    KUPPER T, PLAGELLAT C, BRÄNDLI R C, et al. Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment[J]. Water Research,2006,40(14):2603-2612. doi: 10.1016/j.watres.2006.04.012
    [16]
    SANTOS A J M, Da SILVA J C G E. Degradation studies of UV filter hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate (DHHB) in aqueous solution[J]. Journal of Contaminant Hydrology,2021,236:103740. doi: 10.1016/j.jconhyd.2020.103740
    [17]
    GONG P, YUAN H X, ZHAI P P, et al. Degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate in aqueous solution by UV/H2O2[J]. Environmental Science and Pollution Research International,2015,22(13):10189-10195. doi: 10.1007/s11356-015-4166-7
    [18]
    任燕飞, 王晓慧, 张杉, 等. 催化臭氧化与组合工艺处理废水的研究进展[J]. 现代化工,2017,37(6):24-28.

    REN Y F, WANG X H, ZHANG S, et al. Research progress of wastewater treatment by ozone catalytic oxidation technology and combination technology[J]. Modern Chemical Industry,2017,37(6):24-28.
    [19]
    杨丽, 廖传华, 朱跃钊, 等. 微纳米气泡特性及在环境污染控制中的应用[J]. 化工进展,2012,31(6):1333-1337.

    YANG L, LIAO C H, ZHU Y Z, et al. Characteristics of micro-bubble and nano-bubble and their application in environmental pollution control[J]. Chemical Industry and Engineering Progress,2012,31(6):1333-1337.
    [20]
    王培良, 钱锋, 宋永会, 等. 臭氧氧化降解水中磺胺嘧啶的机理研究[J]. 环境工程技术学报,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061

    WANG P L, QIAN F, SONG Y H, et al. Degradation mechanisms of sulfadiazine in aqueous solution by ozonation[J]. Journal of Environmental Engineering Technology,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061
    [21]
    王勇, 张耀宗, 毕莹莹, 等. 含酚废水α-Fe2O3催化臭氧氧化参数优化及机理分析[J]. 环境工程技术学报,2022,12(5):1500-1507. doi: 10.12153/j.issn.1674-991X.20210355

    WANG Y, ZHANG Y Z, BI Y Y, et al. Optimization and mechanism analysis of α-Fe2O3 catalytic ozone oxidation parameters for phenolic wastewater[J]. Journal of Environmental Engineering Technology,2022,12(5):1500-1507. doi: 10.12153/j.issn.1674-991X.20210355
    [22]
    TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science,2017,246:40-51. doi: 10.1016/j.cis.2017.06.011
    [23]
    TERASAKA K, HIRABAYASHI A, NISHINO T, et al. Development of microbubble aerator for waste water treatment using aerobic activated sludge[J]. Chemical Engineering Science,2011,66(14):3172-3179. doi: 10.1016/j.ces.2011.02.043
    [24]
    ZHANG J, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology,2018,201:10-18. doi: 10.1016/j.seppur.2018.02.003
    [25]
    WU C, LI P, XIA S J, et al. The role of interface in microbubble ozonation of aromatic compounds[J]. Chemosphere,2019,220:1067-1074. doi: 10.1016/j.chemosphere.2018.12.174
    [26]
    AZUMA T, OTOMO K, KUNITOU M, et al. Removal of pharmaceuticals in water by introduction of ozonated microbubbles[J]. Separation and Purification Technology,2019,212:483-489. doi: 10.1016/j.seppur.2018.11.059
    [27]
    JOHN A, BROOKES A, CARRA I, et al. Microbubbles and their application to ozonation in water treatment: a critical review exploring their benefit and future application[J]. Critical Reviews in Environmental Science and Technology,2022,52(9):1561-1603. doi: 10.1080/10643389.2020.1860406
    [28]
    姚昊, 许航, 温昕, 等. 预臭氧氧化对混凝沉淀过程中有机物去除的影响[J]. 中国给水排水,2022,38(7):33-42.

    YAO H, XU H, WEN X, et al. Effect of pre-ozonation on removal of organic matter during coagulation and sedimentation[J]. China Water & Wastewater,2022,38(7):33-42.
    [29]
    唐煜坤, 马健伟, 于忠臣, 等. 微纳米气泡臭氧氧化对剑水蚤和圆水蚤的灭活效能及机理分析[J]. 净水技术,2023,42(11):67-75.

    TANG Y K, MA J W, YU Z C, et al. Efficacy and mechanism analysis of micro-nano bubble ozonation for Cyclops and Daphnia inactivation[J]. Water Purification Technology,2023,42(11):67-75.
    [30]
    袁蓉芳, 田烨, 施春红, 等. 臭氧接触池臭氧投加方式的优化[J]. 环境科学研究,2013,26(9):1014-1021.

    YUAN R F, TIAN Y, SHI C H, et al. Optimization of ozone distribution method in the ozone contactor[J]. Research of Environmental Sciences,2013,26(9):1014-1021.
    [31]
    程洁. 锰基催化剂臭氧催化氧化降解水中PPCPs的效能研究[D]. 北京: 北京林业大学, 2020.
    [32]
    LI H Z, HU L M, SONG D J, et al. Characteristics of micro-nano bubbles and potential application in groundwater bioremediation[J]. Water Environment Research,2014,86(9):844-851. doi: 10.2175/106143014X14062131177953
    [33]
    郑天龙. 微气泡/臭氧—三维电极反应器深度处理腈纶废水的研究[D]. 北京: 北京科技大学, 2016.
    [34]
    CHU L B, XING X H, YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere,2007,68(10):1854-1860. doi: 10.1016/j.chemosphere.2007.03.014
    [35]
    KE S, XIAO W, QUAN N N, et al. Formation and stability of bulk nanobubbles in different solutions[J]. Langmuir,2019,35(15):5250-5256. doi: 10.1021/acs.langmuir.9b00144
    [36]
    林立, 孙卫玲, 倪晋仁. 天然水中离子对消毒过程中挥发性卤代烃生成的影响[J]. 环境化学,2004,23(4):413-419. doi: 10.3321/j.issn:0254-6108.2004.04.011

    LIN L, SUN W L, NI J R. Effects of ions in natuaral water on formation of haloforms during chlorination of drinking water[J]. Environmental Chemistry,2004,23(4):413-419. doi: 10.3321/j.issn:0254-6108.2004.04.011
    [37]
    孙文韬. 臭氧化微气泡强化气浮除藻效能与机理研究[D]. 济南: 山东建筑大学, 2022.
    [38]
    夏慧. 乙炔黑/二氧化锰催化臭氧微气泡氧化有机废水[D]. 武汉: 中南民族大学, 2019. ◇
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(83) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return