Citation: | DAI Q P,XIANG M D,CHANG Z F,et al.Effects of agricultural and forestry wastes on organic matter conversion and enzyme activity in livestock manure composting[J].Journal of Environmental Engineering Technology,2024,14(5):1541-1549 doi: 10.12153/j.issn.1674-991X.20240071 |
Composting livestock and poultry manure through aerobic composting technology using agricultural and forestry wastes is an effective way to reduce environmental pollution and avoid waste of resources. Fresh cow manure supplemented with agricultural and forestry wastes was used for composting in pilot experiments. The effects of different agricultural and forestry wastes on the composting process were investigated by characterizing the differences in physical and chemical properties, the evolution of the material structure of organic matter and humus, and the changes in enzyme activities during the composting process. The results showed that in the early stage of composting, the easily degradable organic matter was degraded by microorganisms, resulting in an increase in the temperature of the compost. In addition, the contents of ammonium nitrogen (${\mathrm{NH}}_4^+ $-N), humic acid (HS) and fulvic acid (FA) decreased gradually. As the high-temperature period continued, microorganisms began to accelerate the degradation of difficult-to-degrade macromolecular organic matter, leading to a decrease in cellulose and hemicellulose contents and a rapid increase in the proportion of lignin content. When the temperature dropped, the activity of nitrifying bacteria was gradually increased, and a large amount of ammonium nitrogen was converted into nitrate nitrogen (${\mathrm{NO}}_3^- $-N). Furthermore, the reduction of organic matter content in the pile body diminished the urease activity. In the later stage of composting, the proportion of refractory lignin was higher, the utilization of organic matter was slow, and the activities of polyphenol oxidase and catalase were inhibited. The research results can provide a scientific basis for optimizing the composting process and improving the quality of composting.
[1] |
DU L F, LIU W K. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: a review[J]. Agronomy for Sustainable Development,2012,32(2):309-327. doi: 10.1007/s13593-011-0062-9
|
[2] |
魏天娇, 李广, 关法春, 等. 农业废弃物好氧堆肥技术的研究与应用[J]. 农业与技术,2023,43(20):11-15.
|
[3] |
曲继松, 张丽娟, 朱倩楠, 等. 农林废弃物资源化利用现状研究进展[J]. 宁夏农林科技,2022,63(8):32-41. doi: 10.3969/j.issn.1002-204x.2022.08.008
|
[4] |
于海霞, 孙黎, 栾冬梅. 不同调理剂对牛粪好氧堆肥的影响[J]. 农业工程学报,2006,22(增刊2):235-238.
|
[5] |
夏湘勤, 席北斗, 黄彩红, 等. 畜禽粪便堆肥臭气控制研究进展[J]. 环境工程技术学报,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142
XIA X Q, XI B D, HUANG C H, et al. Review on odor control of livestock and poultry manure composting[J]. Journal of Environmental Engineering Technology,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142
|
[6] |
孟庆立, 范春燕, 师亚琴, 等. 小麦秸秆与牛粪堆肥最佳模式筛选[J]. 农技服务,2023,40(11):27-30.
|
[7] |
李鑫, 马存录, 刘吉利. 添加辅料和菌剂对牛粪堆肥腐熟效果的影响[J]. 现代农业科技,2024,1(4):96-101. doi: 10.3969/j.issn.1007-5739.2024.04.025
|
[8] |
陈恒喜. 牛粪木渣高温堆肥田间肥效试验[J]. 农业装备技术,2006,32(2):36-37. doi: 10.3969/j.issn.1671-6337.2006.02.014
|
[9] |
CZEKAŁA W, MALIŃSKA K, CÁCERES R, et al. Co-composting of poultry manure mixtures amended with biochar: the effect of biochar on temperature and C-CO2 emission[J]. Bioresource Technology,2016,200:921-927. doi: 10.1016/j.biortech.2015.11.019
|
[10] |
曾光明. 堆肥环境生物与控制[M]. 北京: 科学出版社, 2006.
|
[11] |
YAMAMOTO N, OISHI R, SUYAMA Y, et al. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea were widely distributed in animal manure composts from field-scale facilities[J]. Microbes and Environments,2012,27(4):519-524. doi: 10.1264/jsme2.ME12053
|
[12] |
卫生部, 国家标准化管理委员会. 粪便无害化卫生要求: GB 7959—2012[S/OL]. [2024-05-07]. http://www.nhc.gov.cn/zwgkzt/pgw/201410/85a9d99ca131492f9cf507548ab593c4.shtml.
|
[13] |
ATCHLEY S H, CLARK J B. Variability of temperature, pH, and moisture in an aerobic composting process[J]. Applied and Environmental Microbiology,1979,38(6):1040-1044. doi: 10.1128/aem.38.6.1040-1044.1979
|
[14] |
YAN H L, YANG H X, LI K C, et al. Biochar addition modified carbon flux and related microbiota in cow manure composting[J]. Waste and Biomass Valorization,2023,14(3):847-858.
|
[15] |
MAO H, ZHANG H Y, FU Q, et al. Effects of four additives in pig manure composting on greenhouse gas emission reduction and bacterial community change: science direct[J/OL]. Bioresource Technology, 2023. doi: 10.1016/j.biortech.2019.121896.
|
[16] |
黄晓红, 顾黄辉, 许福涛. 浅析NY 525—2012《有机肥料》技术指标标识方法的修订[J]. 上海蔬菜,2015(5):21-23. doi: 10.3969/j.issn.1002-1469.2015.05.010
|
[17] |
宋楚轩, 唐文英, 罗双雪, 等. 黑臭水体疏浚底泥耦合生物质材料协同好氧堆肥的中试研究[J/OL]. 环境工程. (2023-10-09)[2024-05-07]. http://kns.cnki.net/kcms/detail/11.2097.X.20230525.2150.008.html.
|
[18] |
林山杉, 赵冰, 乔美姣, 等. 厨余垃圾好氧堆肥优势细菌的分离及处理效率研究[J]. 环境工程,2014,32(7):115-118.
|
[19] |
MISHRA S K, YADAV K D. Assessment of the effect of particle size and selected physico-chemical and biological parameters on the efficiency and quality of composting of garden waste[J]. Journal of Environmental Chemical Engineering,2022,10(3):107925. doi: 10.1016/j.jece.2022.107925
|
[20] |
卢泽. 探究不同辅料与生物沥浸污泥混合堆肥的有机质变化特征[D]. 桂林: 桂林理工大学, 2021.
|
[21] |
TONG B X, WANG X, WANG S Q, et al. Transformation of nitrogen and carbon during composting of manure litter with different methods[J]. Bioresource Technology,2019,293:122046. doi: 10.1016/j.biortech.2019.122046
|
[22] |
马闯, 扈斌, 刘福勇, 等. 有机废弃物好氧堆肥过程中微生物及酶活性变化状况综述[J]. 环境工程,2019,37(9):159-164.
|
[23] |
HAO X, HAO X. Nitrogen transformation and losses during composting and mitigation strategies[J]. Dynamic Biochemistry Process Biotechnology & Molecular Biology,2008,2(1):10-18.
|
[24] |
COSKUN D, BRITTO D T, SHI W M, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J]. Nature Plants,2017,3:17074. doi: 10.1038/nplants.2017.74
|
[25] |
李丹阳, 李恕艳, 李国学, 等. 添加剂对猪粪秸秆堆肥的氮素损失控制效果[J]. 农业工程学报,2016,32(增刊2):260-267. doi: 10.11975/j.issn.1002-6819.2016.z2.036
|
[26] |
WANG L Y, WANG T F, XING Z J, et al. Enhanced lignocellulose degradation and composts fertility of cattle manure and wheat straw composting by Bacillus inoculation[J]. Journal of Environmental Chemical Engineering,2023,11(3):109940. doi: 10.1016/j.jece.2023.109940
|
[27] |
WAHG M, WU Y, WANG X, et al. Effects of thermophiles inoculation on the efficiency and maturity of rice straw composting[J]. Bioresource Technology, 2022, 354: 127195.
|
[28] |
KOMILIS D P, HAM R K. The effect of lignin and sugars to the aerobic decomposition of solid wastes[J]. Waste Management,2003,23(5):419-423. doi: 10.1016/S0956-053X(03)00062-X
|
[29] |
成志远, 邱慧珍, 苏杨琴, 等. 添加剂对堆肥温室气体排放和碳素转化的影响[J]. 环境科学与技术,2023,46(9):167-177.
|
[30] |
MA C F, LO P K, XU J Q, et al. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting[J]. Bioresource Technology,2020,314:123731. doi: 10.1016/j.biortech.2020.123731
|
[31] |
HARINDINTWALI J D, ZHOU J L, YU X B. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: a novel tool for environmental sustainability[J]. Science of the Total Environment,2020,715:136912. doi: 10.1016/j.scitotenv.2020.136912
|
[32] |
MA R N, LIU Y, WANG J N, et al. Effects of oxygen levels on maturity, humification, and odor emissions during chicken manure composting[J]. Journal of Cleaner Production,2022,369:133326. doi: 10.1016/j.jclepro.2022.133326
|
[33] |
SONG Y J, WANG Y X, LI R Y, et al. Effects of common microplastics on aerobic composting of cow manure: physiochemical characteristics, humification and microbial community[J/OL]. SSRN Electronic Journal, 2022. doi: 10.2139/ssrn.4174952.
|
[34] |
王广耀, 李雪. 有机物料配比对堆肥腐殖质及养分含量变化的影响[J]. 河南农业科学,2021,50(2):66-71.
|
[35] |
ZHANG S H, CHEN Z Q, WEN Q X, et al. Assessing the stability in composting of penicillin mycelial dreg via parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrix (EEM)[J]. Chemical Engineering Journal,2016,299:167-176. doi: 10.1016/j.cej.2016.04.020
|
[36] |
闫金龙, 江韬, 赵秀兰, 等. 含生物质炭城市污泥堆肥中溶解性有机质的光谱特征[J]. 中国环境科学,2014,34(2):459-465.
|
[37] |
MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model[J]. Environmental Science & Technology,2011,45(7):2909-2916.
|
[38] |
LÜ B Y, XING M Y, ZHAO C H, et al. Towards understanding the stabilization process in vermicomposting using PARAFAC analysis of fluorescence spectra[J]. Chemosphere,2014,117:216-222. doi: 10.1016/j.chemosphere.2014.06.089
|
[39] |
GUO X J, HE X S, ZHANG H, et al. Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis (PARAFAC)[J]. Microchemical Journal,2012,102:115-122. doi: 10.1016/j.microc.2011.12.006
|
[40] |
BAI L, DENG Y, LI J, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology,2020,307:122941. doi: 10.1016/j.biortech.2020.122941
|
[41] |
赵芹, 程东会, 王燕, 等. 不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析[J]. 环境工程技术学报,2023,13(4):1514-1524. doi: 10.12153/j.issn.1674-991X.20221230
ZHAO Q, CHENG D H, WANG Y, et al. Analysis of the time series difference of the material structure evolution of DOM and humic acid during composting of different materials[J]. Journal of Environmental Engineering Technology,2023,13(4):1514-1524. doi: 10.12153/j.issn.1674-991X.20221230
|
[42] |
VARGAS-GARCÍA M C, SUÁREZ-ESTRELLA F, LÓPEZ M J, et al. Microbial population dynamics and enzyme activities in composting processes with different starting materials[J]. Waste Management,2010,30(5):771-778. doi: 10.1016/j.wasman.2009.12.019
|
[43] |
时红蕾, 王晓昌, 李倩. 四环素对人粪便好氧堆肥过程中酶活性及腐熟的影响[J]. 环境化学,2018,37(2):209-215. doi: 10.7524/j.issn.0254-6108.2017061201
|
[44] |
DEVI S H, VIJAYALAKSHMI K, JYOTSNA K P, et al. Comparative assessment in enzyme activities and microbial populations during normal and vermicomposting[J]. Journal of Environmental Biology,2009,30(6):1013-1017.
|
[45] |
张卫娟, 谷洁, 高华, 等. 锌污染对猪粪堆肥过程中氧化还原类酶活性的影响[J]. 环境科学学报,2012,32(1):241-247.
|
[46] |
梁东丽, 谷洁, 秦清军, 等. 接种菌剂对猪粪高温堆肥中酶活性的影响[J]. 农业工程学报,2009,25(9):243-248. doi: 10.3969/j.issn.1002-6819.2009.09.043
|
[47] |
谷思玉, 谷邵臣, 赵昕宇. 微生物接种对生活垃圾堆肥生化特性的影响[J]. 东北农业大学学报,2012,43(2):78-82. doi: 10.3969/j.issn.1005-9369.2012.02.015
|
[48] |
YAO X H, MIN H, LÜ Z H, et al. Influence ofacetamiprid onsoil enzymatic activities andrespiration[J]. European Journal of Soil Biology,2006,42(2):120-126. doi: 10.1016/j.ejsobi.2005.12.001
|
[49] |
曹秀芹, 贾明艳, 潘亚红, 等. 外源菌剂对餐厨垃圾和污泥联合堆肥酶活性及微生物的影响[J]. 环境污染与防治,2023,45(4):477-485. □
|