Volume 14 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
HUANG W B,YANG G R,HAN X M,et al.Optimizing the pathways of industrial solid waste recycling under multiple perspectives: a case study of copper smelting slag[J].Journal of Environmental Engineering Technology,2024,14(5):1580-1588 doi: 10.12153/j.issn.1674-991X.20240280
Citation: HUANG W B,YANG G R,HAN X M,et al.Optimizing the pathways of industrial solid waste recycling under multiple perspectives: a case study of copper smelting slag[J].Journal of Environmental Engineering Technology,2024,14(5):1580-1588 doi: 10.12153/j.issn.1674-991X.20240280

Optimizing the pathways of industrial solid waste recycling under multiple perspectives: a case study of copper smelting slag

doi: 10.12153/j.issn.1674-991X.20240280
  • Received Date: 2024-04-30
  • Accepted Date: 2024-08-26
  • Rev Recd Date: 2024-08-09
  • To mitigate the environmental and climate impacts of industrial solid waste management and disposal processes, and to enhance recycling efficiency, this study developed a multidimensional optimization method for the recycling of industrial waste. The method integrated three indicators: environmental-resource interaction attribute, life cycle assessment, and economic resource value assessment. The findings indicated that compared to landfill methods, recycling pathways through upcycling and downcycling of industrial solid waste significantly reduced ecotoxicity and human health toxicity by 96.86% and 98.53%, respectively. The method can also diminish soil pollution and preserve soil ecological health. It was anticipated that by 2035, the proportions of upcycling, downcycling, and reuse of copper smelting slag would reach 30%, 50%, and 10%, respectively, achieving optimal target values. However, an increased proportion of upcycling would lead to higher carbon emissions and reduced overall benefits. Based on these results, downcycling could process a large volume of industrial solid waste in the short term but was constrained by the construction industry and product quality management. Therefore, long-term planning requires rationally allocating the proportions of industrial solid waste recycling pathways to maximize environmental and economic benefits.

     

  • loading
  • [1]
    XU J H, GUAN Y R, OLDFIELD J, et al. China carbon emission accounts 2020-2021[J]. Applied Energy,2024,360:122837. doi: 10.1016/j.apenergy.2024.122837
    [2]
    中共中央 国务院. 中共中央 国务院关于全面推进美丽中国建设的意见[A/OL]. [2024-04-20]. https://www.gov.cn/gongbao/2024/issue_11126/202401/content_6928805.html.
    [3]
    ZHU J M, CHERTOW M R. Greening industrial production through waste recovery: "comprehensive utilization of resources" in China[J]. Environmental Science & Technology,2016,50(5):2175-2182.
    [4]
    国务院办公厅. 国务院办公厅关于加快构建废弃物循环利用体系的意见[A/OL]. (2024-02-09)[2024-04-20]. https://www.gov.cn/zhengce/zhengceku/202402/content_6931080.htm.
    [5]
    ZENG X L, GONG R Y, CHEN W Q, et al. Uncovering the recycling potential of "new" WEEE in China[J]. Environmental Science & Technology,2016,50(3):1347-1358.
    [6]
    KANWAL Q, LI J H, ZENG X L. Mapping recyclability of industrial waste for anthropogenic circularity: a circular economy approach[J]. ACS Sustainable Chemistry & Engineering,2021,9(35):11927-11936.
    [7]
    辛宝平, 王佳. 涉重危废三维属性及其精细化分级分类体系[J]. 环境工程学报,2022,16(2):355-362.

    XIN B P, WANG J. Three-dimensional properties of hazardous wastes containing heavy metals and their refined classification and grading system[J]. Chinese Journal of Environmental Engineering,2022,16(2):355-362.
    [8]
    黄文博, 李金惠, 曾现来. 固体废物无害化精准定量评估及科学启示: 以典型工业废物为例[J]. 科学通报,2022,67(7):685-696.

    HUANG W B, LI J H, ZENG X L. Accurately quantifying the detoxication of solid waste and its scientific insights: the case of typical industrial waste[J]. Chinese Science Bulletin,2022,67(7):685-696.
    [9]
    WANG Y X, LEVIS J W, BARLAZ M A. Life-cycle assessment of a regulatory compliant U. S. municipal solid waste landfill[J]. Environmental Science & Technology,2021,55(20):13583-13592.
    [10]
    ZHANG Y, JI Y J, XU H, et al. Life cycle assessment of valuable metal extraction from copper pyrometallurgical solid waste[J]. Resources, Conservation and Recycling,2023,191:106875. doi: 10.1016/j.resconrec.2023.106875
    [11]
    di MAIO F, REM P C, BALDÉ K, et al. Measuring resource efficiency and circular economy: a market value approach[J]. Resources, Conservation and Recycling,2017,122:163-171. doi: 10.1016/j.resconrec.2017.02.009
    [12]
    PENG X X, JIANG Y S, CHEN Z H, et al. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review[J]. Environmental Chemistry Letters,2023,21(2):765-801. doi: 10.1007/s10311-022-01551-5
    [13]
    谢明辉, 满贺诚, 段华波, 等. 生命周期影响评价方法及本地化研究进展[J]. 环境工程技术学报,2022,12(6):2148-2156.

    XIE M H, MAN H C, DUAN H B, et al. Research progress on the life cycle impact assessment methods and their localization in China[J]. Journal of Environmental Engineering Technology,2022,12(6):2148-2156.
    [14]
    WANG X, LI C, LAM C H, et al. Emerging waste valorisation techniques to moderate the hazardous impacts, and their path towards sustainability[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127023.
    [15]
    FARAGÒ M, DAMGAARD A, MADSEN J A, et al. From wastewater treatment to water resource recovery: environmental and economic impacts of full-scale implementation[J]. Water Research,2021,204:117554. doi: 10.1016/j.watres.2021.117554
    [16]
    温宗国, 唐岩岩, 王俊博, 等. 新时代循环经济发展助力美丽中国建设的路径与方向[J]. 中国环境管理,2022,14(6):33-41.

    WEN Z G, TANG Y Y, WANG J B, et al. The development of circular economy in the new era has helped to build a beautiful China[J]. Chinese Journal of Environmental Management,2022,14(6):33-41.
    [17]
    张旅, 杨建新, 刘晶茹, 等. 基于生命周期评价的铜尾渣资源化利用环境效益: 以制取蒸压砖为例[J]. 岩石矿物学杂志,2022,41(5):950-958.

    ZHANG L, YANG J X, LIU J R, et al. Environmental benefit of copper tailings resource utilization based on life cycle assessment: a case study of autoclaved bricks production[J]. Acta Petrologica et Mineralogica,2022,41(5):950-958.
    [18]
    ADRIANTO L R, PFISTER S. Prospective environmental assessment of reprocessing and valorization alternatives for sulfidic copper tailings[J]. Resources, Conservation and Recycling,2022,186:106567. doi: 10.1016/j.resconrec.2022.106567
    [19]
    ADRIANTO L R, CIACCI L, PFISTER S, et al. Toward sustainable reprocessing and valorization of sulfidic copper tailings: Scenarios and prospective LCA[J]. Science of the Total Environment,2023,871:162038. doi: 10.1016/j.scitotenv.2023.162038
    [20]
    肖文革, 牛飞, 王立, 等. 正丁基黄原酸钠干燥品的生产工艺研究[J]. 有色矿冶,2016,32(3):16-17. doi: 10.3969/j.issn.1007-967X.2016.03.005

    XIAO W G, NIU F, WANG L, et al. The Analysis of the Production Technology for Sodium Butyl Xanthate(dry pellet)[J]. Non-Ferrous Mining and Metallurgy,2016,32(3):16-17. doi: 10.3969/j.issn.1007-967X.2016.03.005
    [21]
    YOUSEFLOO A, BABAZADEH R. Designing an integrated municipal solid waste management network: a case study[J]. Journal of Cleaner Production,2020,244:118824. doi: 10.1016/j.jclepro.2019.118824
    [22]
    JO Y S, JANG Y S. Comparison of waste settlement characteristics for two landfills disposed in long sequential periods[J]. Waste Management,2021,131:433-442. doi: 10.1016/j.wasman.2021.07.003
    [23]
    刘奇汶, 毕莹莹, 董黎明, 等. 基于生命周期评价的原生和再生PET纤维环境影响对比分析[J]. 环境工程技术学报,2023,13(4):1635-1642.

    LIU Q W, BI Y Y, DONG L M, et al. Comparative analysis of the environmental impact of virgin and recycled PET fibers based on life cycle assessment[J]. Journal of Environmental Engineering Technology,2023,13(4):1635-1642.
    [24]
    ZENG X L, ALI S H, TIAN J P, et al. Mapping anthropogenic mineral generation in China and its implications for a circular economy[J]. Nature Communications,2020,11(1):1544. doi: 10.1038/s41467-020-15246-4
    [25]
    陈曦, 代文彬, 陈学刚, 等. 有色冶金渣的资源化利用研究现状[J]. 有色冶金节能,2022,38(5):9-15.

    CHEN X, DAI W B, CHEN X G, et al. Research status of resource utilization of nonferrous metallurgical slag[J]. Energy Saving of Nonferrous Metallurgy,2022,38(5):9-15.
    [26]
    国家发展和改革委员会, 科学技术部, 工业和信息化部, 等. 关于“十四五”大宗固体废弃物综合利用的指导意见[A/OL]. (2021-03-18)[2024-04-20]. https://www.gov.cn/zhengce/zhengceku/2021-03/25/content_5595566.htm.
    [27]
    工业和信息化部, 国家发展和改革委员会, 科学技术部, 等. 关于加快推动工业资源综合利用的实施方案[A/OL]. [2024-04-20]. https://www.miit.gov.cn/cms_files/filemanager/1226211233/attach/202112/d592a0f95c10417a8340d647c780efa5.pdf. ⊕
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article Views(31) PDF Downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return