SONG Z Y,TIAN J Q,CAI L H,et al.Industrial test of CO2 capture and utilization from flue gas in thermal power plant based on chemical looping mineralization technology[J].Journal of Environmental Engineering Technology,2025,15(2):486-494. DOI: 10.12153/j.issn.1674-991X.20240428
Citation: SONG Z Y,TIAN J Q,CAI L H,et al.Industrial test of CO2 capture and utilization from flue gas in thermal power plant based on chemical looping mineralization technology[J].Journal of Environmental Engineering Technology,2025,15(2):486-494. DOI: 10.12153/j.issn.1674-991X.20240428

Industrial test of CO2 capture and utilization from flue gas in thermal power plant based on chemical looping mineralization technology

More Information
  • Received Date: June 26, 2024
  • Revised Date: July 25, 2024
  • Accepted Date: October 08, 2024
  • Chemical looping mineralization of carbon dioxide (CO2) with industrial waste to produce fine calcium carbonate is a potential way of CO2 capture and utilization for thermal power plants. An industrial test plant for the mineralization of CO2 with carbide slag was established and run at Datong Thermal Power Plant of China National Energy Group. Here, we reported the process, running conditions and results, carbon emission reduction, and the characteristics of calcium carbonate products of the pilot test. In the pilot process, with ammonia chloride as the looping extraction chemicals, the absorption and mineralization of CO2 were integrated in one three-phase reactor. The pilot plant was designed with a scale of 1 000 t/a (calculated by CO2), running more than 3 000 hours cumulatively. The longest continuous operation time reached 768 hours, with the maximum operating load reaching 148% of the design value. The results showed that the CO2 absorption rate was beyond 90% and over 90% of calcium in the carbide slag had been converted into CaCO3. According to third-party evaluations, the net CO2 emission reduction was 68.6%. Calcium carbonate products could meet the standard of precipitated calcium carbonate for industrial use with particle size of D50<20 μm.

  • [1]
    毛胜耀. 试论碳达峰、碳中和目标的实现路径[J]. 皮革制作与环保科技,2023,4(7):192-194.

    MAO S Y. The way to achieve the goal of carbon peak and carbon neutralization[J]. Leather Manufacture and Environmental Technology,2023,4(7):192-194.
    [2]
    姜华, 李艳萍, 高健. 双碳背景下煤基产业绿色低碳转型之路[J]. 环境工程技术学报,2022,12(5):1580-1583. DOI: 10.12153/j.issn.1674-991X.20220001

    JIANG H, LI Y P, GAO J. The road of green and low-carbon transformation of coal-based industry under carbon peak and carbon neutrality background[J]. Journal of Environmental Engineering Technology,2022,12(5):1580-158. DOI: 10.12153/j.issn.1674-991X.20220001
    [3]
    王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究,2022,35(2):329-338.

    WANG L J, ZHANG J, WANG X S, et al. Pathway of carbon emission peak in China's electric power industry[J]. Research of Environmental Sciences,2022,35(2):329-338.
    [4]
    任晨星, 任清洁, 高翔. “双碳”背景下我国低碳电力发展研究[J]. 热力发电,2024,53(2):1-7.

    REN C X, REN Q J, GAO X. Research on low-carbon electric power development in China under "carbon neutralization and carbon peak" background[J]. Thermal Power Generation,2024,53(2):1-7.
    [5]
    于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊,2022,37(4):423-434.

    YU G R, HAO T X, ZHU J X. Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences,2022,37(4):423-434.
    [6]
    顾永正, 王天堃, 黄艳, 等. 燃煤电厂二氧化碳捕集利用与封存技术及工程应用[J]. 洁净煤技术,2023,29(4):98-108.

    GU Y Z, WANG T K, HUANG Y, et al. Carbon dioxide capture, utilization and storage technology and engineering application for coal-fired power plants[J]. Clean Coal Technology,2023,29(4):98-108.
    [7]
    刘世奇, 皇凡生, 杜瑞斌, 等. 二氧化碳地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158-174. DOI: 10.12363/issn.1001-1986.22.12.0998

    LIU S Q, HUANG F S, DU R B, et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158-174. DOI: 10.12363/issn.1001-1986.22.12.0998
    [8]
    臧雅琼, 高振记, 钟伟. CO2地质封存国内外研究概况与应用[J]. 环境工程技术学报,2012,2(6):503-507. DOI: 10.3969/j.issn.1674-991X.2012.06.079

    ZANG Y Q, GAO Z J, ZHONG W. Overview of research and application of CO2 geological sequestration at home and abroad[J]. Journal of Environmental Engineering Technology,2012,2(6):503-507. DOI: 10.3969/j.issn.1674-991X.2012.06.079
    [9]
    SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature,1990,345:486.
    [10]
    SNÆBJÖRNSDÓTTIR S Ó, SIGFÚSSON B, MARIENI C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1:90-102.
    [11]
    LACKNER K S, WENDT C H, BUTT D P, et al. Carbon dioxide disposal in carbonate minerals[J]. Energy,1995,20(11):1153-1170. DOI: 10.1016/0360-5442(95)00071-N
    [12]
    ZHAO Q, CHU X Y, MEI X H, et al. Co-treatment of waste from steelmaking processes: steel slag-based carbon capture and storage by mineralization[J]. Frontiers in Chemistry,2020,8:571504. DOI: 10.3389/fchem.2020.571504
    [13]
    LI L K, LIU Q, HUANG T Y, et al. Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: a systematic review of recycled concrete aggregate and recycled hardened cement powder[J]. Separation and Purification Technology,2022,298:121512. DOI: 10.1016/j.seppur.2022.121512
    [14]
    刘润静, 李锐, 胡永琪, 等. 电石渣和烟道气为原料生产碳酸钙[J]. 无机盐工业,2013,45(2):50-52. DOI: 10.3969/j.issn.1006-4990.2013.02.017

    LIU R J, LI R, HU Y Q, et al. Preparation of calcium carbonate from calcium carbide residue and flue gas[J]. Inorganic Chemicals Industry,2013,45(2):50-52. DOI: 10.3969/j.issn.1006-4990.2013.02.017
    [15]
    颜鑫. 电石渣生产纳米碳酸钙的工艺研究[J]. 化工科技,2007,15(5):70-72. DOI: 10.3969/j.issn.1008-0511.2007.05.017

    YAN X. Study on the technology of producing nano-CaCO3 from carbide mud residue[J]. Science & Technology in Chemical Industry,2007,15(5):70-72. DOI: 10.3969/j.issn.1008-0511.2007.05.017
    [16]
    李晨, 张雷, 张宏勋, 等. 电石渣合成高纯碳酸钙的研究[J]. 无机盐工业,2011,43(4):52-54. DOI: 10.3969/j.issn.1006-4990.2011.04.017

    LI C, ZHANG L, ZHANG H X, et al. Studies on synthesis of high purity calcium carbonate with calcium carbide residue[J]. Inorganic Chemicals Industry,2011,43(4):52-54. DOI: 10.3969/j.issn.1006-4990.2011.04.017
    [17]
    田飞宇, 牟豪杰, 顾卫荣, 等. 电石渣两步法制备轻质碳酸钙[J]. 现代化工,2013,33(4):95-99. DOI: 10.3969/j.issn.0253-4320.2013.04.023

    TIAN F Y, MU H J, GU W R, et al. Preparation of light calcium carbonate from carbide slag by two-step method[J]. Modern Chemical Industry,2013,33(4):95-99. DOI: 10.3969/j.issn.0253-4320.2013.04.023
    [18]
    冯冬梅, 刘渊, 汤升亮, 等. 电石渣制备轻质碳酸钙循环工艺条件的优化[J]. 现代化工,2014,34(5):117-121.

    FENG D M, LIU Y, TANG S L, et al. Optimization of recycling process for light calcium carbonate produced from calcium carbide residue[J]. Modern Chemical Industry,2014,34(5):117-121.
    [19]
    蒋国强, 张建涛, 于常军, 等. 一种二氧化碳吸收并矿物化装置及方法: CN105457461A[P]. 2016-04-06.
    [20]
    于常军, 王麒, 魏巍. 电石渣矿化固定二氧化碳并制备微细碳酸钙的方法: CN112573555A[P]. 2021-03-30.
    [21]
    卢忠远, 康明, 姜彩荣, 等. 利用电石渣制备多种晶形碳酸钙的研究[J]. 环境科学,2006,27(4):775-778. DOI: 10.3321/j.issn:0250-3301.2006.04.033

    LU Z Y, KANG M, JIANG C R, et al. Calcium carbide of different crystal formation synthesized by calcium carbide residue[J]. Environmental Science,2006,27(4):775-778. DOI: 10.3321/j.issn:0250-3301.2006.04.033
    [22]
    颜鑫, 卢云峰, 马媛媛, 等. 氯化钙-氨水体系生产纳米碳酸钙的复合碳化机理研究[J]. 无机盐工业,2019,51(7):77-80. DOI: 10.11962/1006-4990.2018-0483

    YAN X, LU Y F, MA Y Y, et al. Study on composite carbonization mechanism of nano calcium carbonate produced by calcium chloride-ammonia water system[J]. Inorganic Chemicals Industry,2019,51(7):77-80. □ DOI: 10.11962/1006-4990.2018-0483

Catalog

    Article Metrics

    Article views (7) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return