Volume 7 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
WANG Yiwen, MA Fujun, ZHANG Qian, GU Qingbao. Review of treatment technologies for thermal desorption offgas[J]. Journal of Environmental Engineering Technology, 2017, 7(1): 52-58. doi: 10.3969/j.issn.1674-991X.2017.01.008
Citation: WANG Yiwen, MA Fujun, ZHANG Qian, GU Qingbao. Review of treatment technologies for thermal desorption offgas[J]. Journal of Environmental Engineering Technology, 2017, 7(1): 52-58. doi: 10.3969/j.issn.1674-991X.2017.01.008

Review of treatment technologies for thermal desorption offgas

doi: 10.3969/j.issn.1674-991X.2017.01.008
More Information
  • Corresponding author: Qingbao GU E-mail: guqb@craes.org.cn
  • Received Date: 2016-05-23
  • Publish Date: 2017-01-20
  • The current research status and progress of thermal desorption offgas treatment technologies were reviewed. Four treatment technologies including condensation, adsorption, thermal combustion and catalytic combustion are used in engineering. Condensation is mainly used as a pretreatment of high concentration of organic pollutants in exhaust gas due to its low removal rate. Adsorption and thermal combustion have high removal rate of pollutants in the exhaust gas but with high cost. Catalytic combustion is generally used for purification of low concentration pollutants in exhaust gas. For developing thermal desorption equipment in line with the socioeconomic level of China, two new thermal desorption gas processing technologies including cement kiln co-processing technology and non-thermal plasma technology are proposed. The cement kiln co-processing technology is based on the principle of thermal combustion and can be used for treating thermal desorption offgas of contaminated sites around the cement plants. Non-thermal plasma technology has promising prospects with the advantages of high efficiency, low cost and no secondary pollution.

     

  • loading
  • [1]
    PERCIN P R D . Application of thermal desorption technologies to hazardous waste sites[J]. Journal of Hazardous Materials, 1995,40(2):203-209.
    [2]
    ARESTA M, DIBENEDETTO A, FRAGALE C , et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts[J]. Chemosphere, 2008,70(6):1052-1058.
    doi: 10.1016/j.chemosphere.2007.07.074 pmid: 17850843
    [3]
    GAO Y F, YAN H, ZHAN X H , et al. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing[J]. Environmental Science and Pollution Research, 2013,20(3):1482-1492.
    doi: 10.1007/s11356-012-0991-0 pmid: 22661262
    [4]
    Naval Facilitys Engineering Services Center. Overview of thermal desorption technology[R]. California:Naval Facilitys Engineering Services Center, 1998.
    [5]
    Technology fact sheet:a citizen’s guide to thermal desorption[R]. Kstate:Hazardous Substance Research Centers, 1996.
    [6]
    Naval Facilitys Engineering Services Center. Application guide for thermal desorption systems[R]. California:Naval Facilitys Engineering Services Center, 1998.
    [7]
    US EPA. Superfund remedy report[R].14th ed. Washington DC:Office of Solid Waste and Emergency Response, 2013.
    [8]
    Therma-flite indirect thermal desorption system[EB/OL]. [2016-04-20]. .
    [9]
    RLC technologies incorporated products[EB/OL]. [2016-04-20]. .
    [10]
    GEO Environmental Remediation Company. Vapor treatment technologies[EB/OL]. [2016-04-20]. .
    [11]
    吴康跃, 陈根良, 陈杰 , 等. 农药厂废气污染综合治理系统设计与应用[J]. 环境污染与防治, 2009,31(10):97-99.

    WU K Y, CHEN G L, CHEN J , et al. Application and analysis on comprehensive control technology of waste gas from insecticide factory[J]. Environmental Pollution and Control, 2009,31(10):97-99.
    [12]
    吴碧君, 刘晓勤 . 挥发性有机物污染控制技术研究进展[J]. 电力环境保护, 2005,21(4):40-41.

    WU B J, LIU X Q . The progress in pollution control of volatile organic compounds[J]. Electric Power Environmental Protection, 2005,21(4):40-41.
    [13]
    杭州大地环保工程有限公司. 一种用于有机污染土壤热脱附的尾气净化方法及装置:ZL201510289175.3[P]. 2015-09-16.
    [14]
    MARTINEZ F, PARIENTE I, BREBOU C , et al. Chemical surface modified-activated carbon cloth for catalytic wet peroxide oxidation of phenol[J]. Journal of Chemical Technology and Biotechnology, 2014,89(8):1182-1188.
    [15]
    RIVERA U J, SANCHEZ P M, GOMEZ S V , et al. Activated carbon modifications to enhance its water treatment application:an overview[J]. Journal of Hazardous Materials, 2011,187(1/2/3):1-23.
    doi: 10.1016/j.jhazmat.2011.01.033 pmid: 21306824
    [16]
    张梦竹, 李琳, 刘俊新 , 等. 碱改性活性炭表面特征及其吸附甲烷的研究[J]. 环境科学, 2013,34(1):39-44.

    ZHANG M Z, LI L, LIU J X , et al. Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane[J]. Environmental Science, 2013,34(1):39-44.
    [17]
    SHEN W Z, LI Z J, LIU Y H . Surface chemical functional groups modification of porous carbon[J]. Recent Patents on Chemical Engineering, 2008,1(1):27-40.
    [18]
    刘寒冰, 姜鑫, 王新 , 等. PDMS基涂层活性炭对甲苯、苯和丙酮吸附研究[J]. 环境科学, 2016,37(4):1287-1294.

    LIU H B, JIANG X, WANG X , et al. Toluene,benzene and acetone adsorption by activated carbon coated with PDMS[J]. Environmental Science, 2016,37(4):1287-1294.
    [19]
    JABLOŃSKA M, KRÓL A, KUKULSKA-ZAJAC E , et al. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration[J]. Applied Catalysis B:Environmental, 2015, 166/167:353-365.
    [20]
    Midwest Soil Remediation, Incorporated. Low temperature thermal desorption system[EB/OL]. [2016-04-20]. .
    [21]
    郝吉明, 马广大 . 大气污染控制工程[M].2版. 北京: 高等教育出版社, 2002.
    [22]
    杜长明 . 滑动弧放电等离子体降解气相及液相中有机污染物的研究[D]. 杭州:浙江大学, 2006.
    [23]
    陈杰 . 吸附催化协同低温等离子体降解有机废气[D]. 杭州:浙江大学, 2011.
    [24]
    MEJDOUB N E, SOUIZI A, DELFOSSE L . Experimental and numerical study of the thermal destruction of hexachlorobenzene[J]. Journal of Analytical and Applied Pyrolysis, 1998,47(1):77-94.
    [25]
    SIDHU S, KASTI N, EDWARDS P , et al. Hazardous air pollutants formation from reactions of raw meal organics in cement kilns[J]. Chemosphere, 2001,42(5/6/7):499-506.
    doi: 10.1016/s0045-6535(00)00222-8 pmid: 11219674
    [26]
    马福俊, 丛鑫, 张倩 , 等. 模拟水泥窑工艺对污染土壤热脱附尾气中六氯苯的去除效果[J]. 环境科学研究, 2015,28(8):1311-1316.

    MA F J, CONG X, ZHANG Q , et al. Removal of hexachlorobenzene in thermal desorption offgas by simulated cement kiln[J]. Research of Environmental Sciences, 2015,28(8):1311-1316.
    [27]
    北京金隅红树林环保技术有限责任公司. 一种基于水泥工艺的有机污染土壤热脱附方法和装置:ZL201110393983.6[P]. 2013-09-11.
    [28]
    2016年中国水泥行业发展现状及市场发展形势预测[EB/OL].( 2016-03-23)[2016-04-20]. .
    [29]
    CROOKS W . On the illumination of lines of molecular pressure and the trajectory of molecules[J]. Philosophical Magazine, 1879,7(40):57-64.
    [30]
    贺泓, 李俊华, 上官文峰 , 等. 环境催化:原理及应用[M].2版. 北京: 科学出版社, 2008.
    [31]
    余量 . 滑动弧放电等离子体降解芳香烃类有机污染物的基础研究[D]. 杭州:浙江大学, 2011.
    [32]
    蒋洁敏, 侯健, 郑光云 , 等. 介质阻挡放电常压分解苯、二甲苯[J]. 中国环境科学, 2001,21(6):531-534.

    JIANG J M, HOU J, ZHENG G Y , et al. The decomposition of benzene and xylene under normal atmospheric pressure by dielectric barrier discharge[J]. China Environmenal Science, 2001,21(6):531-534.
    [33]
    LIANG P, JIANG W, ZHANG L , et al. Experimental studies of removing typical VOCs by dielectric barrier discharge reactor of different sizes[J]. Process Safety and Environmental Protection, 2014,94:380-384.
    [34]
    叶招莲, 宋潇潇, 何锦丛 , 等. 介质阻挡放电脱除模拟工业苯系物的可行性[J]. 环境科学学报, 2008,28(12):2480-2486.

    YE Z L, SONG X X, HE J C , et al. Feasibility of benzene series waste gas destruction with DBD technology[J]. Acta Scientiae Circumstantiae, 2008,28(12):2480-2486.
    [35]
    ALLAH Z A, WHITEHEAD J C, MARTIN P . Remediation of dichloromethane (CH2Cl2) using non-thermal,atmospheric pressure plasma generated in a packed-bed reactor[J]. Environmental Science & Technology, 2013,48(1):558-565.
    doi: 10.1021/es402953z pmid: 24274359
    [36]
    VANDENBROUCKE A M, MORENT R, GEYTER N D , et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011,195(1):30-54.
    doi: 10.1016/j.jhazmat.2011.08.060 pmid: 21924828
    [37]
    上海万强科技开发有限公司. 上海万强GHCR高功率窄脉冲VOCs处理技术[EB/OL]. [2016-04-22]. .
    [38]
    派力迪环保. DDBD低温等离子体恶臭异味气体治理技术[EB/OL].( 2014-03-04)[2016-04-22]. .
    [39]
    YAN J H, PENG Z, LU S Y , et al. Destruction of PCDD/Fs by gliding arc discharges[J]. Journal of Environmental Sciences:China, 2007,19(11):1404-1408.
    doi: 10.1016/s1001-0742(07)60229-0 pmid: 18232239
    [40]
    REN Y, LI X D, YU L , et al. Degradation of PCDD/Fs in fly ash by vortex-shaped gliding arc plasma[J]. Plasma Chemistry and Plasma Processing, 2013,33(1):293-305.
    [41]
    陈海红, 骆永明, 滕应 , 等. 重度滴滴涕污染土壤低温等离子体修复条件优化研究[J]. 环境科学, 2013,34(1):302-307.

    CHEN H H, LUO Y M, TENG Y , et al. Optimizing remediation conditions of non-thermal plasma for DDTs heavily contaminated soil[J]. Environmental Science, 2013,34(1):302-307.
    [42]
    浙江大学. 净化处理含持久性有机污染物高温烟气的方法及装置:ZL201110409147.2[P]. 2014-06-04.
    [43]
    深圳市迈科瑞环境科技有限公司. 含半挥发性有机污染物的固体废物的处理方法和设备:ZL201110152596.3[P]. 2013-04-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1932) PDF Downloads(1432) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return