CHEN Zhu, YANG Fan, WU Dongqin. Release rule of gaseous phase pollutants during melting of fly ash from MSW incineration plant[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 705-711. DOI: 10.3969/j.issn.1674-991X.2017.06.097
Citation: CHEN Zhu, YANG Fan, WU Dongqin. Release rule of gaseous phase pollutants during melting of fly ash from MSW incineration plant[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 705-711. DOI: 10.3969/j.issn.1674-991X.2017.06.097

Release rule of gaseous phase pollutants during melting of fly ash from MSW incineration plant

More Information
  • Corresponding author:

    Fan YANG E-mail: fanyang03@163.com

  • Received Date: July 27, 2017
  • Published Date: November 19, 2017
  • The fly ash released from one municipal solid wastes (MSWs) incineration plant was adopted to to analyze the influences of different melting temperatures and sand additive amounts on the compositions and amounts of pollutants in flue gas during the melting process. The fly ash melting experiments were performed in a self-designed high-temperature tube-furnace with temperature controlled and the pollutants collected by a self-design exhaust gas collection system. The weight subtraction method, X-ray fluorescence spectroscopy, atomic absorption spectrometry and electrochemical process were used to analyze volatile matters and gaseous pollutants during melting. The thermodynamic model was used to simulate the production of volatile matters and gaseous pollutants under different melting temperatures and sand additive amounts. The results show that during fly ash melting at 1 000-1 600 ℃ (experiment temperature 1 450 ℃ and 1 550 ℃) and 10%-30% sand (weight ratio of SiO2 to fly ash), the main pollutants in melting flue gas are the melting fly ash, HCl, H2S, SO2, etc. With the increase of the temperature and sand additive amount, the volatile matter (gas yield) increases, and the effect of the temperature is greater than that of the sand. The simulation values and the experimental values fit well, and the simulation values are slightly larger than the experimental ones. The main compositions of melting fly ash are sodium, potassium and chloride salts, and include some volatile Pb and Zn. The main compositions of slag are silicate, aluminate or aluminosilicate, as well as a little sulfide and chloride. The heavy metal leaching contents of slag melted at 1 450 ℃ with 15% sand are below the national inspection line.
  • [1]
    刘略煊, 郑国辉, 邱鸿荣 . 分析垃圾焚烧锅炉烟道灰进入飞灰系统后产生的影响[J].科技风, 2014(14):95-96.
    [2]
    李润东, 池涌, 李水清 , 等. 城市垃圾焚烧飞灰熔融DSC-DTA实验研究[J]. 环境科学, 2002,23(4):113-117.

    LI R D, CHI Y, LI S Q , et al. MSW incineration fly ash melting by DSC-DTA[J]. Environmental Science, 2002,23(4):113-117.
    [3]
    李润东, 池涌, 王雷 , 等. 城市垃圾焚烧飞灰熔融动力学研究[J]. 浙江大学学报(工学版), 2002,36(5):498-503.

    LI R D, CHI Y, WANG L , et al. Kinetic study of MSW incineration fly ash melting by DSC-DTA[J]. Journal of Zhejiang University(Engineering Science), 2002,36(5):498-503.
    [4]
    栾敬德, 姚鹏飞, 李润东 , 等. 矿物演化行为对垃圾焚烧飞灰熔融特性的影响[J]. 环境科学研究, 2015,28(3):447-452.

    LUAN J D, YAO P F, LI R D , et al. Effects of mineral change on melting characteristics of MSW incineration fly ash[J]. Research of Environmental Sciences, 2015,28(3):447-452.
    [5]
    姜永海, 席北斗, 李秀金 , 等. 垃圾焚烧飞灰熔融固化处理过程特性分析[J]. 环境科学, 2005,26(3):176-179.

    JIANG Y H, XI B D, LI X J , et al. Characteristics of melting and solidification process of fly ash from refuse incinerator[J]. Environmental Science, 2005,26(3):176-179.
    [6]
    文娟, 刘清才, 杨剑 . 垃圾焚烧飞灰熔融过程烟气中重金属的迁移分布规律[J]. 环境科学学报, 2010,30(1):148-152.

    WEN J, LIU Q C, YANG J . The migration and distribution of heavy metals in melting flue gas during the melting process of MSWI fly ash[J]. Acta Scientiae Circumstantiae, 2010,30(1):148-152.
    [7]
    张晓萱, 席北斗, 王琪 , 等. 垃圾焚烧飞灰熔融过程中重金属的固化机理以及熔渣浸出特性的研究[J]. 环境污染与防治, 2005,27(5):330-334.

    ZHANG X X, XI B D, WANG Q , et al. Solidification of heavy metals in municipal solid waste incineration(MSWI) fly ash during melting process and leaching characteristic of its melting products[J]. Environmental Polluting & Control, 2005,27(5):330-334.
    [8]
    SAKAI S, HIRAOKA M . Municipal solid waste incinerator residue recycling by thermal processes[J]. Waste Management, 2000,20:249-258.
    doi: 10.1016/S0956-053X(99)00315-3
    [9]
    王小波, 阎常峰, 赵增立 , 等. 垃圾焚烧飞灰熔融污染物排放研究[J]. 燃料化学学报, 2008,36(6):748-752.

    WANG X B, YAN C F, ZHAO Z L , et al. Pollutant discharge of melting ash from waste incineration[J]. Journal of Fuel Chemistry and Technology, 2008,36(6):748-752.
    [10]
    RYO Y, NISHIMURA M . Influence of ash composition on heavy metal emission in ash melting process[J]. Fuel, 2002,81:1335-1340.
    doi: 10.1016/S0016-2361(02)00041-8
    [11]
    姜永海, 席北斗, 李秀金 , 等. 添加剂对垃圾焚烧飞灰熔融特性的影响[J]. 环境科学, 2006,27(11):2288-2292.

    JIANG Y H, XI B D, LI X J , et al. Influence of additive on characteristic of slag during the process of melting fly ash from municipal solid waste incinerator[J]. Environmental Science, 2006,27(11):2288-2292.
    [12]
    YOUNG J P, JONG H . Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling[J]. Ceramics International, 2002,28:689-694.
    doi: 10.1016/S0272-8842(02)00030-5
    [13]
    KAVOURASA P, KAIMAKAMISA G . Vitrification of lead-rich solid ashes from incineration hazardous industrial wastes[J]. Waste Management, 2003,23:361-371.
    doi: 10.1016/S0956-053X(02)00153-8 pmid: 12781225
    [14]
    CHENG T W, CHEN Y S . On formation of CaO-Al2O3-SiO2 glass-ceramics by vitrification of incinerator fly ash[J]. Chemosphere, 2003,51:817-824.
    doi: 10.1016/S0045-6535(03)00189-9
    [15]
    陈德珍, 张鹤声 . 垃圾焚烧炉飞灰的低温固化初步研究[J].上海环境科学, 2002(6):343-349.

    CHEN D Z, ZHANG H S . Preliminary study on MSWI fly ash vitrification at lower temperature[J].Shanghai Environmental Sciences, 2002(6):343-349.
    [16]
    KUO Y M, LIN T C . Fate of polycyclic aromatichydrocarbons during vitrification of incinerator ash in a coke bedfurnace[J]. Chemosphere, 2003,51:313-319.
    doi: 10.1016/S0045-6535(02)00852-4
  • Related Articles

    [1]CHEN Yang, NI Pengfei, WU Chundu, ZHANG Bo, ZHENG Xiaoyong. Efficiency and mechanism of microbubble O3/H2O2 advanced treatment of secondary effluent from a resin factory[J]. Journal of Environmental Engineering Technology, 2024, 14(4): 1158-1166. DOI: 10.12153/j.issn.1674-991X.20240201
    [2]PAN Guanfu, MA Yuanyuan, XU Dinghua, HANG Chenzhe, LIU Yang. Research status on catalyst of CO2 catalytic conversion[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 79-84. DOI: 10.12153/j.issn.1674-991X.20210763
    [3]LI Yongfeng, MA Jie, WANG Shenglan, JIANG Yue, YANG Hairong, ZHANG Xiaotian, WANG Jian. Research on the pollution characteristics of NO2 emitted by motor vehicles on typical roads in Chongqing[J]. Journal of Environmental Engineering Technology, 2022, 12(5): 1601-1608. DOI: 10.12153/j.issn.1674-991X.20210379
    [4]LI Qiufang, DING Xueying, LIU Cuimian, CAO Renjie, GU Jinfeng, WANG Yang. Research on the temporal and spatial distribution of PM2.5 at the township scales: a case study in Shijiazhuang City[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 683-692. DOI: 10.12153/j.issn.1674-991X.20210474
    [5]MA Yuxia, TAN Leilei, SHEN Zhiqiang, ZHOU Yuexi, CHEN Xuemin, FU Xiaoyong, TANG Hanying. Study on denitrification performance using calcium hydroxide pretreated straw as solid carbon source[J]. Journal of Environmental Engineering Technology, 2017, 7(2): 168-174. DOI: 10.3969/j.issn.1674-991X.2017.02.025
    [6]HUANG Yifan, YU Zhihong, LIAN Fei, SHEN Yue, SONG Zhengguo. Adsorption Properties of Nano MnO2 for Cu2+ and Cd2+ in Water[J]. Journal of Environmental Engineering Technology, 2016, 6(4): 350-356. DOI: 10.3969/j.issn.1674-991X.2016.04.052
    [7]YAN Xiao-miao, LI Yu-ran, ZHU Ting-yu, QI Feng. Review of Emission and Simultaneous Control of Multiple Pollutants from Iron-steel Sintering Flue Gas[J]. Journal of Environmental Engineering Technology, 2015, 5(2): 85-90. DOI: 10.3969/j.issn.1674-991X.2015.02.013
    [8]WANG Zheng-jie, TONG Zhen-song, LU Peng. Absorption Characteristics of Cd2+ by Sludge Incineration Ashes[J]. Journal of Environmental Engineering Technology, 2014, 4(6): 467-473. DOI: 10.3969/j.issn.1674-991X.2014.06.074
    [9]WEI Peng, WANG Wen-jie, WU Hao, WU Chun-sheng, WANG Zong-shuang, GAO Qing-xian, SU Fu-qing, REN Zhen-hai. Analysis of Monthly Variability of China NO2 and Control of Emission reduction Based on Remote Sensing[J]. Journal of Environmental Engineering Technology, 2013, 3(4): 331-336. DOI: 10.3969/j.issn.1674-991X.2013.04.052
    [10]ZANG Ya-qiong, GAO Zhen-ji, ZHONG Wei. Overview of Research and Application of CO2 Geological Sequestration at Home and Abroad[J]. Journal of Environmental Engineering Technology, 2012, 2(6): 503-507. DOI: 10.3969/j.issn.1674-991X.2012.06.079
  • Cited by

    Periodical cited type(6)

    1. 张春飞,曹腾飞,于晓亮,胡彦弢,刘丹,韩先伟. 危险废物焚烧飞灰等离子体熔融试验. 中国粉体技术. 2023(02): 121-129 .
    2. 潘伟,陈德珍,王国雲,俞海淼. 分类和资源回收对垃圾热解半焦熔融的影响. 环境卫生工程. 2022(02): 37-44 .
    3. 徐鹏程,胡明,许继云,王云刚,赵彬,陈勇,袁浩然,温宗国. 生活垃圾焚烧飞灰等离子熔融过程氯元素的迁移转化特性研究. 工程热物理学报. 2022(07): 1969-1975 .
    4. 胡明,徐鹏程,王云刚,虎训,郭斌,肖诚斌,赵彬,陈勇,袁浩然,吴玉峰,温宗国. 添加剂对生活垃圾焚烧飞灰熔融过程及产物影响的研究. 工业加热. 2022(10): 9-13 .
    5. 张春飞,胡彦弢,张建东,陈瑶姬,戴豪波. 矿物组分对生活垃圾焚烧飞灰熔融特性的影响. 环境卫生工程. 2022(06): 64-69 .
    6. 杨帆,李要建,柳培文. 飞灰熔融气相产物盐分布规律. 工程科学与技术. 2021(06): 219-227 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (404) PDF downloads (548) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return