Volume 8 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
LIU Yixuan, JIANG Yuanyuan, MEI Hong, WAN Duanji, YU Pan. Effects of different renewal rates on continuous domestic wastewater treatment by Chlorella zofingiensis[J]. Journal of Environmental Engineering Technology, 2018, 8(1): 71-77. doi: 10.3969/j.issn.1674-991X.2018.01.009
Citation: LIU Yixuan, JIANG Yuanyuan, MEI Hong, WAN Duanji, YU Pan. Effects of different renewal rates on continuous domestic wastewater treatment by Chlorella zofingiensis[J]. Journal of Environmental Engineering Technology, 2018, 8(1): 71-77. doi: 10.3969/j.issn.1674-991X.2018.01.009

Effects of different renewal rates on continuous domestic wastewater treatment by Chlorella zofingiensis

doi: 10.3969/j.issn.1674-991X.2018.01.009
More Information
  • Corresponding author: Hong MEI E-mail: hongmei_0207@126.com
  • Received Date: 2017-07-30
  • Publish Date: 2018-01-20
  • In order to optimize the condition of continuous domestic wastewater treatment by Chlorella zofingiensis (C. zofingiensis) and to improve the treatment efficiency, the effects of different renewal rates on the treatment efficiency were studied. Six different renewal rates (0.20, 0.30, 0.40, 0.50, 0.60 and 0.70 d -1) were set for the experiment using C. zofingiensis to continuously treat domestic wastewater in the column photo bio-reactor. Through the experiments, the parabolic regression curve of the renewal rate, the cell yield, nitrogen and phosphorus consumption rate were established to find the optimal range of renewal rate. The results showed that the renewal rate had significant effects on the growth of C. zofingiensis and the treatment of pollutants. During the continuous reaction, with the increase of renewal rate, the algal cells concentration at steady state decreased gradually, while the effluent nutrients concentration increased. There is a parabolic regression relationship, between the renewal rate (x) and the cell yield (P) respectively, the nitrogen consumption rate (y1), the phosphorus consumption rate (y2) :P=-1.179(x-0.45) 2+0.026(x-0.45)+0.239(R 2=0.990 9), y1=-66.79(x-0.45) 2+2.55(x-0.45)+10.26(R 2=0.936 7), y2=-19(x-0.45) 2+1.963(x-0.45)+2.913(R 2=0.924 5). The determination coefficient R 2 of three curves is high, and the extreme values are all 0.45 d -1 which can be considered as the optimal renewal rate.

     

  • loading
  • [1]
    RENUKA N, SOOD A, RATHA S K , et al. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production[J]. Journal of Applied Phycology, 2013,25(5):1529-1537.
    doi: 10.1007/s10811-013-9982-x
    [2]
    DONGYUN S, HYUNUK C, UTOMO J C , et al. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent[J]. Bioresource Technology, 2015,184:215-221.
    doi: 10.1016/j.biortech.2014.10.090 pmid: 25466996
    [3]
    ZHU L D, TAKALA J, HILTUNEN E , et al. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production[J]. Bioresource Technology, 2013,144(3):14.
    doi: 10.1016/j.biortech.2013.06.061 pmid: 23850821
    [4]
    DALRYMPLE O K, HALFHIDE T, UDOM I , et al. Wastewater use in algae production for generation of renewable resources:a review and preliminary results[J]. Aquatic Biosystems, 2013,9(1):2.
    doi: 10.1186/2046-9063-9-2 pmid: 23289706
    [5]
    杨福利, 李秀辰, 白晓磊 , 等. 小球藻脱氮除磷及其生物量增殖潜力的研究[J].大连海洋大学学报,2014(2):193-197.

    YANG F L, LI X C, BAI X L , et al. The removal efficiency of nitrogen and phosphorus wastes and multiplication in biomass in green alga Chlorella vulgaris[J].Journal of Dalian Fisheries University, 2014(2):193-197.
    [6]
    岳维忠, 黄小平, 黄良民 , 等. 大型藻类净化养殖水体的初步研究[J]. 海洋环境科学, 2004,23(1):13-15.
    doi: 10.3969/j.issn.1007-6336.2004.01.004

    YUE W Z, HUANG X P, HUANG L M , et al. Preliminary study on purification of mariculture water by macroscopic algae[J]. Marine Environmental Science, 2004,23(1):13-15. doi: 10.3969/j.issn.1007-6336.2004.01.004
    [7]
    SUALI E, SARBATLY R . Conversion of microalgae to biofuel[J]. Renewable & Sustainable Energy Reviews, 2012,16(6):4316-4342.
    doi: 10.1016/j.rser.2012.03.047
    [8]
    BRÁNYIKOVÁ I, MAR$\dot{S}$ ÁLKOVÁ B, DOUCHA J , et al. Microalgae:novel highly efficient starch producers[J]. Biotechnology & Bioengineering, 2011,108(4):766-776.
    doi: 10.1002/bit.23016 pmid: 21404251
    [9]
    PHUKAN M M, CHUTIA R S, KONWAR B K , et al. Microalgae Chlorella as a potential bio-energy feedstock[J]. Applied Energy, 2011,88(10):3307-3312.
    doi: 10.1016/j.apenergy.2010.11.026
    [10]
    蒋礼玲, 张亚杰, 范晓蕾 , 等. 不同培养模式对能源微藻生物质产率的影响[J]. 可再生能源, 2010,28(2):83-86.

    JIANG L L, ZHANG Y J, FAN X L , et al. Effects of different cultivation modes on the biomass productivity of energy microalgae[J]. Renewable Energy Resources, 2010,28(2):83-86.
    [11]
    IMAIZUMI Y, NAGAO N, YUSOFF F M , et al. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO2[J]. Bioresource Technology, 2014,162:53.
    doi: 10.1016/j.biortech.2014.03.123 pmid: 24747382
    [12]
    TANG H, CHEN M ,SIMON N K Y,et al.Continuous microalgae cultivation in a photobioreactor[J]. Biotechnology & Bioengineering, 2012,109(10):2468-2474.
    doi: 10.1002/bit.24516 pmid: 22488253
    [13]
    ZHU Y H, JIANG J G . Continuous cultivation of Dunaliella salina in photobioreactor for the production of β-carotene[J]. European Food Research & Technology, 2008,227(3):953-959.
    [14]
    SÁNCHEZ J F, FERNÁNDEZ J M, ACIÉN F G , et al. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis[J]. Process Biochemistry, 2008,43(4):398-405.
    doi: 10.1016/j.procbio.2008.01.004
    [15]
    BHATNAGAR A, BHATNAGAR M, CHINNASAMY S , et al. Chlorella minutissima:a promising fuel alga for cultivation in municipal wastewaters[J]. Applied Biochemistry & Biotechnology, 2010,161(1/2/3/4/5/6/7/8):523-536.
    [16]
    HUANG Y, CHEN X, KONG H , et al. The effect on algae decay by aeration under light-shading condition[J]. Environmental Pollution & Control, 2008,30(10):44-47.
    [17]
    国家环境保护总局. 城镇污水处理厂污染物排放标准:GB 18918—2002[S].北京:中国环境科学出版社, 2002.
    [18]
    丁彦聪, 高群, 刘家尧 , 等. 环境因子对小球藻生长的影响及高产油培养条件的优化[J]. 生态学报, 2011,31(18):5307-5315.

    DING Y C, GAO Q, LIU J Y , et al. Effect of environmental factors on growth of Chlorella sp.and optimization of culture conditions for high oil production[J]. Acta Ecologica Sinica, 2011,31(18):5307-5315.
    [19]
    王舒, 肖艳, 李哲 , 等. 小球藻纯种室内模拟培养初探[J]. 水生生物学报, 2016,40(3):580-588.
    doi: 10.7541/2016.78

    WANG S, XIAO Y, LI Z , et al. Preliminary research on cultivated simulation of chlorella under axenic culture[J]. Acta Hydrobiologica Sinica, 2016,40(3):580-588. doi: 10.7541/2016.78
    [20]
    杨泽熵, 李鑫, 王英娟 . 一种培养产油微藻的新型气升式光生物反应器设计[J]. 西北大学学报(自然科学版), 2013,43(4):585-589.
    doi: 10.3969/j.issn.1000-274X.2013.04.018

    YANG Z S, LI X, WANG Y J . Design of a new type airlift photobioreactor for oleaginous microalgae culture[J]. Journal of Northwest University(Natural Science Edition), 2013,43(4):585-589. doi: 10.3969/j.issn.1000-274X.2013.04.018
    [21]
    吴电云, 邹宁, 常林 . 生物反应器的研究进展[J]. 生命科学仪器, 2010,8(3):58-61.
    [22]
    WEN X, GENG Y, LI Y . Enhanced lipid production in Chlorella pyrenoidosa by continuous culture[J]. Bioresource Technology, 2014,161:297-303.
    doi: 10.1016/j.biortech.2014.03.077 pmid: 24717322
    [23]
    CHU H Q, TAN X B, ZHANG Y L , et al. Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors[J]. Bioresource Technology, 2015,185:40-48.
    doi: 10.1016/j.biortech.2015.02.030 pmid: 25746477
    [24]
    万晓安, 刘德富, 杨正建 , 等. 不同曝气比率对蛋白核小球藻生长的影响[J]. 水生态学杂志, 2014,35(4):48-54.

    WAN X A, LIU D F, YANG Z J , et al. Design of a new type airlift photobioreactor for oleaginous microalgae culture[J]. Journal of Hydroecology, 2014,35(4):48-54.
    [25]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社, 2002.
    [26]
    王英娟, 贺敬, 李壮 , 等. 光密度法测定蛋白核小球藻生物量[J]. 西北大学学报(自然科学版), 2012,42(1):60-63.

    WANG Y J, HE J, LI Z , et al. Determination of Chlorella pyrenoidosa biomass using optical density method[J]. Journal of Northwest University(Natural Science Edition), 2012,42(1):60-63.
    [27]
    蒋礼玲, 张亚杰, 李潇萍 , 等. 微藻培养模式研究进展[J]. 可再生能源, 2010,28(1):56-62.

    JIANG L L, ZHANG Y J, LI X P , et al. Research developments in cultivation modes for microalgae[J]. Renewable Energy Resources, 2010,28(1):56-62.
    [28]
    张登沥, 何培民, 周洪琪 . 不同方法培养小球藻的试验[J]. 上海水产大学学报, 1999,8(1):1-5.

    ZHANG D L, HE P M , ZHOU H Q.Experiment on different culture methods of Chlorella spp[J].Journal of ShangHai Fisheries University, 1999, 8(1):1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(728) PDF Downloads(304) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return