Volume 8 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
TAN Wei, YUAN Zhen, JIANG Jinyuan, CHENG Yongqian, DAI Hongxing. Preparation of different morphologies of Au/α-MnO2 catalyst for oxidation of carbon monoxide and toluene[J]. Journal of Environmental Engineering Technology, 2018, 8(2): 142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019
Citation: TAN Wei, YUAN Zhen, JIANG Jinyuan, CHENG Yongqian, DAI Hongxing. Preparation of different morphologies of Au/α-MnO2 catalyst for oxidation of carbon monoxide and toluene[J]. Journal of Environmental Engineering Technology, 2018, 8(2): 142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019

Preparation of different morphologies of Au/α-MnO2 catalyst for oxidation of carbon monoxide and toluene

doi: 10.3969/j.issn.1674-991X.2018.02.019
More Information
  • Corresponding author: Jinyuan JIANG E-mail: jiangjy@craes.org.cn
  • Received Date: 2017-09-18
  • Publish Date: 2018-03-20
  • 1-D nanosized rod-like, wire-like, and tubular α-MnO2 (xAu/α-MnO2,x=2%,4%,8%,10%) were prepared using the hydrothermal and PVA-protected NaBH4 reduction methods at different temperatures with KMnO4 and/or MnSO4 as Mn source, respectively. It is shown that the α-MnO2 in xAu/α-MnO2 was tetragonal in crystal structure, surface area of α-MnO2 nanorods, nanowires, and nanotubes was in the range of 48.4-114.0 m 2/g. The 4%Au/α-MnO2 sample possessed the highest adsorbed oxygen species concentration and the best low-temperature reducibility, thus showing the highest catalytic activity: the T50% and T90% (temperatures required for achieving reactant conversions of 50% and 90%) were 11.4 and 16.3 ℃ for CO oxidation, and 210 and 225 ℃ for toluene oxidation at a space velocity of 20 000 mL/(g ·h), respectively. Based on the characterization results and activity data, it is concluded that the better low-temperature reducibility, higher oxygen adspecies concentration, highly dispersed Au NPs, and stronger interaction between Au NPs and MnO2 nanorods were the main factors influencing the catalytic performance of 4%Au/α-MnO2.

     

  • loading
  • [1]
    BLASIN-AUBE V, BELKOUCH J, MONCEAUX L . General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst:influence of mixture[J]. Applied Catalysis B:Environmental, 2003,43(2):175-186.
    doi: 10.1016/S0926-3373(02)00302-8
    [2]
    ZHENG D S, SUN S X, FAN W L , et al. One-step preparation of single-crystalline β-MnO2 nanotubes[J]. Journal of Physical Chemistry B, 2005,109:16439-16443.
    doi: 10.1021/jp052370l
    [3]
    YUAN C Z, GAO B, SU L H , et al. Interface synjournal of mesoporous MnO2 and its electrochemical capacitive behaviors[J]. Journal of Colloid and Interface Science, 2008,322:545-550.
    doi: 10.1016/j.jcis.2008.02.055 pmid: 18417147
    [4]
    LIANG S H, TENG F, BULGAN G , et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. Journal of Physical Chemistry C, 2008,112:5307-5315.
    doi: 10.1021/jp0774995
    [5]
    HICKEY N, FORNASIERO P, KAPAR J , et al. Effects of the nature of the reducing agent on the transient redox behavior of NM/Ce0.68Zr0.32O2(NM=Pt,Pd,and Rh)[J]. Journal of Catalysis, 2001,200(1):181-193.
    doi: 10.1006/jcat.2001.3201
    [6]
    FORNASIERO P, KAPAR J, SERGO V , et al. Redox behavior of high-surface-area Rh-,Pt-,and Pd-loaded Ce0.5Zr0.5O2 mixed oxide[J]. Journal of Catalysis, 2001,202(1):56-59.
    doi: 10.1006/jcat.1998.2321
    [7]
    THORMÄHLEN L P, SKOGLUNDH M, FRIDELL E , et al. Low-temperature CO oxidation over platinum and cobalt oxide catalysts[J]. Journal of Catalysis, 1999,188(2):300-310.
    doi: 10.1006/jcat.1999.2665
    [8]
    HOFLUND G B, GARDNER S D, SCHRYER D R , et al. Au/MnOx catalytic performance characteristics for low-temperature carbon monoxide[J]. Applied Catalysis B:Environmental, 1995,B6(2):117-126.
    doi: 10.1016/0926-3373(95)00010-0
    [9]
    周仁贤, 郑小明 . Pt/Al2O3,Pd/Al2O3催化剂上CO氧化与表面氧脱出-恢复性能[J]. 催化学报, 1995,16(4):324-327.

    ZHOU R X, ZHENG X M . Oxidation of CO and surface oxygen property on Pt/Al2O3 and Pd/Al2O3[J]. Chinese Journal of Catalysis, 1995,16(4):324-327.
    [10]
    SCHRYER D R, UPCHURCH B T, VAN NORMAN J D , et al. Effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers[J]. Journal of Catalysis, 1990,122(1):193-197.
    doi: 10.1016/0021-9517(90)90270-T
    [11]
    SHEINTUCH M, SCHMIDT J, LECTHMAN Y , et al. Modelling catalyst-support interactions in carbon monoxide oxidation catalyzed by Pd/SnO2[J]. Applied Catalysis, 1989,49(1):55-65.
    doi: 10.1016/S0166-9834(00)81421-9
    [12]
    DONG G L, WANG J G, GAO Y B , et al. Preparation and characterization of CeO2-TiO2 mixed oxides[J]. Journal of Inorganic Materials, 1999,14(6):873-880.
    doi: 10.3321/j.issn:1000-324X.1999.06.007
    [13]
    ZHU H Q, QIN Z F, WANG J G , et al. Low temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. Journal of Catalysis, 2005,233(1):41-50.
    doi: 10.1016/j.jcat.2005.04.033
    [14]
    叶青, 霍飞飞, 闫立娜 , 等. α-MnO2负载纳米Au催化剂低温催化氧化CO和苯的性能[J]. 物理化学学报, 2011,27(12):2872-2880.
    doi: 10.3866/PKU.WHXB20112872

    YE Q, HUO F F, YAN L N , et al. Highly active Au/α-MnO2 catalysts for the low-temperature oxidation of carbon monoxide and benzene[J]. Acta Physico-Chimica Sinica, 2011,27(12):2872-2880. doi: 10.3866/PKU.WHXB20112872
    [15]
    郝郑平, 安立敦, 王弘立 . 负载型金催化剂用于室温下CO的消除[J].环境污染与防治, 1996(4):4-5.

    HAO Z P, AN L D, WANG H L . Supported gold catalyst for removing carbon monoxide at room temperature[J].Environmental Pollution & Control, 1996(4):4-5.
    [16]
    王芳 . 规整形貌MnOx的可控合成及其对甲苯氧化的催化性能研究[D]. 北京:北京工业大学, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(756) PDF Downloads(319) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return