Volume 8 Issue 3
May  2018
Turn off MathJax
Article Contents
HU Jiejun, DONG Jing, SHEN Zhiqiang, ZHOU Yuexi, CHEN Xuemin, FU Xiaoyong. Nitrification performance for secondary effluent from MWTP using bio-zeolite constructed wetland[J]. Journal of Environmental Engineering Technology, 2018, 8(3): 274-281. doi: 10.3969/j.issn.1674-991X.2018.03.036
Citation: HU Jiejun, DONG Jing, SHEN Zhiqiang, ZHOU Yuexi, CHEN Xuemin, FU Xiaoyong. Nitrification performance for secondary effluent from MWTP using bio-zeolite constructed wetland[J]. Journal of Environmental Engineering Technology, 2018, 8(3): 274-281. doi: 10.3969/j.issn.1674-991X.2018.03.036

Nitrification performance for secondary effluent from MWTP using bio-zeolite constructed wetland

doi: 10.3969/j.issn.1674-991X.2018.03.036
More Information
  • Corresponding author: Yuexi ZHOU E-mail: zhouyuexi@263.net
  • Received Date: 2017-12-14
  • Publish Date: 2018-05-20
  • The bio-zeolite constructed wetland (CW) pilot plant receiving a real secondary effluent of the municipal wastewater treatment plant(WWTP) was set up. The performance of bio-zeolite CW enhancing the nitrification of the WWTP secondary effluent and the effect of temperature on nitrification rate were explored during 273 days. The results indicated that the N H 4 + from secondary effluent was removed rapidly and effectively. Average removal rate of N H 4 + was 90.5% and the concentration of N H 4 + in the effluent was lower than 0.5 mg/L in the normal operation phase. After a short recovery period of 12 days, the average removal rate of N H 4 + was higher than 70%. The average removal rate of N H 4 + still remained at a relative high level as 67.6% in the low temperature stage (below 13 ℃). The temperature had signi?cant impact on the nitrification, and the average nitrification rate increased from 28% to 62% as the water temperature rose slowly from below 15 ℃ to above 25 ℃ in bio-zeolite CW. No obvious accumulation of nitrite nitrogen was found in the effluent of bio-zeolite CW except the low temperature stage, and the average concentration of nitrite nitrogen in the effluent was 0.16 mg/L. N H 4 + was mainly nitrified by microorganisms and transformed into nitrate.

     

  • loading
  • [1]
    王正芳, 张继彪, 郑正 , 等. 物理强化复合人工湿地处理污水厂尾水实例[J]. 中国给水排水, 2013,29(2):75-77.

    WANG Z F, ZHANG J B, ZHENG Z , et al. Physically enhanced integrated constructed wetland for treating effluent from sewage treatment plant[J]. China Water and Wastewater, 2013,29(2):75-77.
    [2]
    段田莉, 成功, 郑媛媛 , 等. 高效垂直流人工湿地+多级生态塘深度处理污水厂尾水[J]. 环境工程学报, 2017,11(11):5828-5835.

    DUAN T L, CHENG G, ZHENG Y Y , et al. Advanced treatment of tail water from sewage plant by high-efficiency vertical flow constructed wetland-multistage ecological ponds[J]. Chinese Journal of Environmental Engineering, 2017,11(11):5828-5835
    [3]
    王玮 . 水平潜流人工湿地强化脱氮的技术及其机制研究[D]. 上海:东华大学, 2017.

    WANG W . Technique and mechanism of intensified nitrogen removal in horizontal subsurface flow constructed wetland[D]. Shanghai:Donghua University, 2017.
    [4]
    王亮 . 复合垂直流人工湿地对污水深度处理研究[D]. 合肥:合肥工业大学, 2016.

    WANG L . Advanced treatment of urban sewage by integreated vertical flow construded)wetland[D]. Hefei:Hefei University of Technology, 2016.
    [5]
    万正芬 . 城镇污水处理厂出水中氮磷高效吸附填料的筛选[D]. 青岛:中国海洋大学, 2015.
    [6]
    李冰 . 天然沸石填料曝气生物滤池脱氮性能[D]. 合肥:合肥工业大学; 2007.

    LI B . Study on the performance of denirifican in the zeolite biological aerated filter and bioregeneration of zeolite[D]. Hefei:Hefei University of Technology, 2007.
    [7]
    TAN E, HSU T C, HUANG X , et al.Nitrogen transformations and removal efficiency enhancement of a constructed wetland in subtropical Taiwan[J].Science of the Total Environment, 2017, 601/ 602:1378-1388.
    doi: 10.1016/j.scitotenv.2017.05.282
    [8]
    张曦, 吴为中, 温东辉 , 等. 生物沸石床污水脱氮效果及机理[J]. 环境科学, 2003,24(5):75-80.
    doi: 10.3321/j.issn:0250-3301.2003.05.014

    ZHANG X, WU W Z, WEN D H , et al. Effect and mechanism of removal of nitrogen in the mimic sewage using bio-zeolite system[J]. Environmental Science, 2003,24(5):75-80. doi: 10.3321/j.issn:0250-3301.2003.05.014
    [9]
    ZHANG W, LEI Q, LI Z , et al. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment[J]. Environmental Science and Pollution Research Intermational, 2016,23(3), 2677-2683.
    doi: 10.1007/s11356-015-5485-4 pmid: 26438366
    [10]
    温东辉, 张曦, 吴为中 , 等. 天然沸石对铵吸附能力的生物再生试验研究[J]. 北京大学学报(自然科学版), 2003,39(4):494-500.
    doi: 10.3321/j.issn:0479-8023.2003.04.009

    WEN D H, ZHANG X, WU W Z , et al. Research on bio-regeneration process of the ammonium adsorption capacity of natural zeolite[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2003,39(4):494-500. doi: 10.3321/j.issn:0479-8023.2003.04.009
    [11]
    沈志强, 牟锐, 李元志 , 等. 人工湿地生物沸石快速吸附-再生性能与再生机理研究[J]. 环境科学学报, 2016,36(4):1242-1247.
    doi: 10.13671/j.hjkxxb.2015.0619

    SHEN Z Q, MOU R, LI Y Z , et al. Study on the rapid adsorption-regeneration performance of bio-zeolite and its regeneration mechanism in aconstructed wetland[J]. Acta Scientiae Circumstantiae, 2016,36(4):1242-1247. doi: 10.13671/j.hjkxxb.2015.0619
    [12]
    张兵, 崔福义, 左金龙 , 等. 斜发沸石对氨氮的去除效果及其再生试验研究[J]. 中国给水排水, 2008,24(23):85-88.
    doi: 10.3321/j.issn:1000-4602.2008.23.021

    ZHANG B, CUI F Y, ZUO J L , et al. Study on ammonia removal by clinoptilolite and its regeneration[J]. China Water and Wastewater, 2008,24(23):85-88. doi: 10.3321/j.issn:1000-4602.2008.23.021
    [13]
    卢少勇, 桂萌, 余刚 , 等. 人工湿地中沸石和土壤的氮吸附与再生试验研究[J]. 农业工程学报, 2006,22(11):64-68.
    doi: 10.3321/j.issn:1002-6819.2006.11.014

    LU S Y, GUI M, YU G , et al. Nitrogen adsorption and reactivation of zeolite and soil in constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(11):64-68. doi: 10.3321/j.issn:1002-6819.2006.11.014
    [14]
    付国楷 . 活性污泥法-人工湿地联合处理城市污水研究[D]. 上海:同济大学, 2007.

    FU G K . Research on activated sludge progress-constructed wetland combinative technology treating municipal wastewate[D]. Shanghai:Tongji Unversity, 2007.
    [15]
    张磊 . 人工湿地系统对污水处理厂二级出水净化实验研究[D]. 西安:西安理工大学, 2010.

    ZHANG L . Study on treatment of efflunet in municipal secondary sewage plant with constructed wetland[D]. Xi’an:Xi’an University of Technology, 2010.
    [16]
    温东辉, 唐孝炎 . 天然斜发沸石对溶液中N$N_{4}^{+}$的物化作用机理[J]. 中国环境科学, 2003,23(5):509-514.
    doi: 10.3321/j.issn:1000-6923.2003.05.014

    WEN D H, TANG X Y . Mechanism for physical-chemical actions of natural zeolite on N$N_{4}^{+}$ in solution[J]. China Environmental Science, 2003,23(5):509-514. doi: 10.3321/j.issn:1000-6923.2003.05.014
    [17]
    李德生, 黄晓东, 王占生 . 生物沸石反应器在微污染水源水处理中的应用[J]. 环境科学, 2000,21(5):71-73.
    doi: 10.3321/j.issn:0250-3301.2000.05.016

    LI D S, HUANG X D, WANG Z S . Application of bio-zeolite reactor on micro-polluted source water quality treatment[J]. Environmental Science, 2000,21(5):71-73. doi: 10.3321/j.issn:0250-3301.2000.05.016
    [18]
    雒维国 . 潜流型人工湿地对氮污染物的去除效果研究[D]. 南京:东南大学, 2005.

    LUO W G . Study on removal efficiency of nitrogen pollutants in subsurface flow constructed wetland[D]. Nanjing:Southeast University, 2005.
    [19]
    AKRATOS C S, TSIHRINTZIS V A . Effect of temperature,HRT,vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2007,29(2):173-191.
    doi: 10.1016/j.ecoleng.2006.06.013
    [20]
    MIETTO A, POLITEO M, BRESCHIGLIARO S , et al. Temperature influence on nitrogen removal in a hybrid constructed wetland system in Northern Italy[J]. Ecological Engineering, 2015,75:291-302.
    doi: 10.1016/j.ecoleng.2014.11.027
    [21]
    PENG L, HUA Y M, CAI J B , et al. Effects of plants and temperature on nitrogen removal and microbiology in a pilot-scale integrated vertical-flow wetland treating primary domestic wastewater[J]. Ecological Engineering, 2014,64:285-290.
    doi: 10.1016/j.ecoleng.2013.12.036
    [22]
    COOKSON W R, CORNFORTH I S, ROWARTH J S . Winter soil temperature(2-15 ℃) effects on nitrogen transformations in clover green manure amended or unamended soils:a laboratory and field study[J]. Soil Biology & Biochemistry, 2002,34:1401-1415.
    [23]
    ZHANG L Y, XIA X F, ZHAO Y , et al. The ammonium nitrogen oxidation process in horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2011,37:1614-1619.
    doi: 10.1016/j.ecoleng.2011.06.020
    [24]
    张宇坤, 王淑莹, 董怡君 , 等. 游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响[J]. 中国环境科学, 2014,34(5):1242-1247.

    ZHANG Y K, WANG S Y, DONG Y J , et al. Effect of FA and FNA on activity of nitrite-oxidising bacteria[J]. China Environmental Science, 2014,34(5):1242-1247.
    [25]
    张曦, 吴为中, 温东辉 , 等. 氨氮在天然沸石上的吸附及解吸[J]. 环境化学, 2003,22(2):166-171.

    ZHANG X, WU W Z, WEN D H , et al. Adsorption and desorption of ammonia-nitrogen onto nautral zaolite[J]. Environmental Chemistry, 2003,22(2):166-171.
    [26]
    SAEED T, SUN G Z . Enhanced denitrification and organics removal in hybrid wetland columns:comparative experiments[J]. Bioresource Technology, 2011,102(2):967-974.
    doi: 10.1016/j.biortech.2010.09.056 pmid: 20934326
    [27]
    SAEED T, SUN G Z . A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands:dependency on environmental parameters,operating conditions and supporting media[J]. Journal of Environmental Management, 2012,112:429-448.
    doi: 10.1016/j.jenvman.2012.08.011 pmid: 23032989
    [28]
    夏艳阳, 崔理华, 黄小龙 . 污水碳源对复合垂直流-水平流人工湿地脱氮效果的影响[J]. 环境工程学报, 2017,11(1):638-644.

    XIA Y Y, CUI L H, HUANG X L . Effect of internal carbon source supplement on nitrogen removal in integrated vertical-flow and horizontal-flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2017,11(1):638-644.
    [29]
    付国楷, 周琪, 杨殿海 , 等. 潜流人工湿地深度净化二级处理出水研究[J]. 中国给水排水, 2007,23(13):31-35.
    doi: 10.3321/j.issn:1000-4602.2007.13.008

    FU G K, ZHOU Q, YANG D H , et al. Research on subsurface-flow constructed wetland for advanced treatment of secondary effluent[J]. China Water and Wastewater, 2007,23(13):31-35. doi: 10.3321/j.issn:1000-4602.2007.13.008
    [30]
    KOTTI I P, GIKAS G D, TSIHRINTZIS V A . Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems[J]. Ecological Engineering, 2010,36:862-875.
    doi: 10.1016/j.ecoleng.2010.03.002
    [31]
    WU H M, ZHANG J, NGO H H , et al. A review on the sustainability of constructed wetlands for wastewater treatment:design and operation[J]. Bioresource Technology, 2015,175:594-601.
    doi: 10.1016/j.biortech.2014.10.068 pmid: 25453440
    [32]
    杨林, 李咏梅 . 组合人工湿地处理工业园区污水厂尾水的中试研究[J]. 环境工程学报, 2012,6(6):1846-1850.

    YANG L, LI Y M . Pilot-scale study on advanced treatment of tail-water from wastewater treatment plant in industrial park using hybrid constructed wetland system[J]. Chinese Journal of Environmental Engineering, 2012,6(6):1846-1850.
    [33]
    BAI L L, WANG C H, HUANG C H , et al. Reuse of drinking water treatment residuals as a substrate in constructed wetlands for sewage tertiary treatment[J]. Ecological Engineering, 2014,70:295-303.
    doi: 10.1016/j.ecoleng.2014.06.015
    [34]
    GHOSH D, GOPAL B . Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland[J]. Ecological Engineering, 2010,36:1044-1051.
    doi: 10.1016/j.ecoleng.2010.04.017
    [35]
    刘昌伟, 薛晨, 杨永哲 , 等. 新型潮汐流人工湿地深度处理生活污水的研究[J]. 中国给水排水, 2012,28(11):10-13.
    doi: 10.3969/j.issn.1000-4602.2012.11.003

    LIU C W, XUE C, YANG Y Z , et al. Novel tidal-flow constructed wetland for advanced treatment of domestic sewage[J]. China Water and Wastewater, 2012,28(11):10-13. doi: 10.3969/j.issn.1000-4602.2012.11.003
    [36]
    韩梅, 高伟, 赵志伟 , 等. 悬浮填料-沸石BAF处理低温高氨氮污染源水效能[J]. 中国给水排水, 2015,31(1):32-40.

    HAN M, GAO W, ZHAO Z W , et al. Efficiency of biological aerated filter with suspended media and zeolite for treatment of low-temperature and high ammonia nitrogen source water[J]. China Water and Wastewater, 2015,31(1):32-40
    [37]
    丁绍兰, 封香香, 谢林花 . 沸石-核桃壳曝气生物滤池去除废水中氨氮的研究[J]. 工业水处理, 2017,37(5):45-49.

    DING S L, FENG X X, XIE L H . Research on the removal of ammonia nitrogen from wastewater by zeolite and walnut combined fillers of the biological aerated filter[J]. Industrial Water Treatment, 2017,37(5):45-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(672) PDF Downloads(263) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return