Citation: | WAN Long, MENG Fansheng, YANG Qi, WANG Yeyao. Depassivation of micro current in hexavalent chromium reduction by zero valent iron[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 429-434. doi: 10.3969/j.issn.1674-991X.2018.04.056 |
[1] |
WILKIN R T, PLIUS R W, SEWELL G W . Long-term performance of permeable reactive barriers using zero-valent iron:geochemical and microbiological effects[J]. Ground Water, 2003,41(4):493-503.
doi: 10.1111/j.1745-6584.2003.tb02383.x pmid: 12873012 |
[2] |
RI-NYARKO F, GRAJALES-MESA S J, MALINA G . An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014,111:243-259.
doi: 10.1016/j.chemosphere.2014.03.112 pmid: 24997925 |
[3] |
孟凡生, 王业耀, 李莉 . PRB去除模拟地下水中六价铬反应特性[J]. 环境工程技术学报, 2013,3(2):92-97.
doi: 10.3969/j.issn.1674-991X.2013.02.016 MENG F S, WANG Y Y, LI L . Reactivity characteristics of hexavalent chromium removed by PRB in simulated ground water[J]. Journal of Environmental Engineering Technology, 2013,3(2):92-97. doi: 10.3969/j.issn.1674-991X.2013.02.016
|
[4] |
李志红, 王广才, 史浙明 , 等. 渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017,36(2):316-327.
doi: 10.7524/j.issn.0254-6108.2017.02.2016082201 LI Z H, WANG G C, SHI Z M , et al. Review of permeable reactive barrier technology:the experimental study of filling materials,the example of remediation technology,and the longevity of the system[J]. Environmental Chemistry, 2017,36(2):316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
|
[5] |
陈亮 . 零价铁渗透反应格栅中铁的微生物钝化效应及电活化技术[D]. 北京:中国地质大学(北京), 2012.
|
[6] |
FU R B, YANG Y P, XU Z , et al. The removal of chromium (Ⅵ) and lead (Ⅱ) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J]. Chemosphere, 2015,138:726-734.
doi: 10.1016/j.chemosphere.2015.07.051 pmid: 26267258 |
[7] |
武甲, 田秀君, 王锦 , 等. 应用纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水[J]. 环境科学, 2010,31(3):645-652.
WU J, TIAN X J, WANG J , et al. Treatment of Cr(Ⅵ) in deoxygenated simulated groundwater using nanoscale zero-valent iron[J]. Environmental Science, 2010,31(3):645-652.
|
[8] |
GRITTINI C, MALCOMSON M, FERNANDO Q , et al. Rapid dechlorination of poly chlorinated-biphenyls on the surface of a Pd/Fe bimetallic system[J]. Environmental Science & Technology, 1995,29(11):2898-2900.
|
[9] |
张道萍, 孟凡生, 王业耀 , 等. 双金属和多金属系统对零价铁利用效率的改进[J]. 环境科学研究, 2016,29(9):1362-1369.
doi: 10.13198/j.issn.1001-6929.2016.09.15 ZHANG D P, MENG F S, WANG Y Y , et al. Improvement of zero valent iron efficiency by bimetallic system and multi metallic system[J]. Research of Environmental Sciences, 2016,29(9):1362-1369. doi: 10.13198/j.issn.1001-6929.2016.09.15
|
[10] |
DONG H R, HE Q, ZENG G M , et al. Chromate removal by surface-modified nanoscale zero-valent iron:effect of different surface coatings and water chemistry[J]. Journal of Colloid and Interface Science, 2016,471:7-13.
doi: 10.1016/j.jcis.2016.03.011 pmid: 26970032 |
[11] |
DONG L, LIN L, LI Q Y , et al. Enhanced nitrate-nitrogen removal by modified attapulgite supported nanoscale zero valent iron treating simulated groundwater[J]. Journal of Environmental Management, 2018,213:151-158.
doi: 10.1016/j.jenvman.2018.02.073 pmid: 29494931 |
[12] |
杨应钊, 刘菲, 孔祥科 , 等. 多介质渗透反应格栅中氨氮的转化与存在形态[J]. 环境工程学报, 2013,7(8):2931-2936.
YANG Y Z, LIU F, KONG X K , et al. Transformation and existing form of ammonia-N in a multi-media permeable reactive barrier[J]. Chinese Journal of Environmental Engineering, 2013,7(8):2931-2936.
|
[13] |
李雅, 张增强, 沈锋 , 等. 堆肥+零价铁可渗透反应墙修复黄土高原地下水中铬铅复合污染[J]. 环境工程学报, 2014,8(1):110-115.
LI Y, ZHANG Z Q, SHEN F , et al. Remediation of Cr-Pb polluted groundwater using a mixed zero-valent iron-compost permeable reactive barrier in Loess Plateau area[J]. Chinese Journal of Environmental Engineering, 2014,8(1):110-115.
|
[14] |
LUO H P, JIN S, FALLGREN P H , et al. Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation[J]. Chemical Engineering Journal, 2010,160(1):185-189.
doi: 10.1016/j.cej.2010.03.036 |
[15] |
CHEN L, JIN S, FALLGREN P H , et al. Electrochemical depassivation of zero-valent iron for trichloroethene reduction[J]. Journal of Hazardous Materials, 2012,239/240:265-269.
doi: 10.1016/j.jhazmat.2012.08.074 pmid: 23009798 |
[16] |
JIN S, FALLGREN P H, MORRIS J M , et al. Degradation of trichloroethene in water by electron supplementation[J]. Chemical Engineering Journal, 2018,140:642-645.
doi: 10.1016/j.cej.2008.01.035 |
[17] |
JIN S, FALLGREN P H . Electrically induced reduction of trichloroethene in clay[J]. Journal of Hazardous Materials, 2010,173:200-204.
doi: 10.1016/j.jhazmat.2009.08.069 pmid: 19729244 |
[18] |
POWELL R M, PLUS R W, HIGHTOWER S K , et al. Coupled iron corrosion and chromate reduction:mechanisms for subsurface remediation[J]. Environmental Science & Technology, 1995,29(8):1913-1922.
doi: 10.1021/es00008a008 pmid: 22191337 |
[19] |
卢欣 . 渗透式反应墙对地下水Cr(Ⅵ)去除及电化学解钝化研究[D]. 北京:清华大学, 2014.
LU X . Study on Cr(Ⅵ) removal and electrochemical depassivation in a PRB system[D]. Beijing:Tsinghua University, 2014.
|
[20] |
POWELL R M, PULS R W . Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron[J]. Environmental Science & Technology, 1997,31(8):2244-2251.
doi: 10.1021/es9607345 |
[21] |
PONDER S M, DARAB J D, MALLOUK T e . Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solution using supported,nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000,34(12):2564-2569.
|
[22] |
RITTER K, ODZIEMKOWSKI M S, SIMPGRAGA R , et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron[J]. Journal of Contaminant Hydrology, 2003,65:121-136.
doi: 10.1016/S0169-7722(02)00234-6 pmid: 12855204 |