Volume 8 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
WAN Long, MENG Fansheng, YANG Qi, WANG Yeyao. Depassivation of micro current in hexavalent chromium reduction by zero valent iron[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 429-434. doi: 10.3969/j.issn.1674-991X.2018.04.056
Citation: WAN Long, MENG Fansheng, YANG Qi, WANG Yeyao. Depassivation of micro current in hexavalent chromium reduction by zero valent iron[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 429-434. doi: 10.3969/j.issn.1674-991X.2018.04.056

Depassivation of micro current in hexavalent chromium reduction by zero valent iron

doi: 10.3969/j.issn.1674-991X.2018.04.056
  • Received Date: 2018-03-15
  • Publish Date: 2018-07-20
  • In order to overcome the low removal efficiency for hexavalent chromium(Cr(Ⅵ)) due to the passivation when zero valent iron(ZVI) is used as permeable reactive barriers(PRB) reactive media, the micro current depassivation advanced method was proposed by loading low-DC voltage on the reactive media. In the PRB column flow simulation test, the industrial scrap ZVI powder(0.15-0.35 mm) was used as reactive media, the different micro voltage was loaded on ZVI, and thus the Cr(Ⅵ) removal performance and mechanism were investigated. The results showed that the micro current could solve the ZVI passivation to some extent and enhance the utilization efficiency of ZVI. When Cr(Ⅵ) removal efficiency reached 60%, the effluent volume of the experimental groups with 1 V, 3 V, 7 V loaded on ZVI were 1.42, 1.88, and 2.75 times as many as that of the control group unloaded voltage, respectively. Cr(Ⅵ) removal efficiency was increased with the increase of voltage loaded on ZVI. The micro current could not affect the precipitation of trivalent chromium significantly, but it can influence the precipitation of ferrous or ferric iron.

     

  • loading
  • [1]
    WILKIN R T, PLIUS R W, SEWELL G W . Long-term performance of permeable reactive barriers using zero-valent iron:geochemical and microbiological effects[J]. Ground Water, 2003,41(4):493-503.
    doi: 10.1111/j.1745-6584.2003.tb02383.x pmid: 12873012
    [2]
    RI-NYARKO F, GRAJALES-MESA S J, MALINA G . An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014,111:243-259.
    doi: 10.1016/j.chemosphere.2014.03.112 pmid: 24997925
    [3]
    孟凡生, 王业耀, 李莉 . PRB去除模拟地下水中六价铬反应特性[J]. 环境工程技术学报, 2013,3(2):92-97.
    doi: 10.3969/j.issn.1674-991X.2013.02.016

    MENG F S, WANG Y Y, LI L . Reactivity characteristics of hexavalent chromium removed by PRB in simulated ground water[J]. Journal of Environmental Engineering Technology, 2013,3(2):92-97. doi: 10.3969/j.issn.1674-991X.2013.02.016
    [4]
    李志红, 王广才, 史浙明 , 等. 渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017,36(2):316-327.
    doi: 10.7524/j.issn.0254-6108.2017.02.2016082201

    LI Z H, WANG G C, SHI Z M , et al. Review of permeable reactive barrier technology:the experimental study of filling materials,the example of remediation technology,and the longevity of the system[J]. Environmental Chemistry, 2017,36(2):316-327. doi: 10.7524/j.issn.0254-6108.2017.02.2016082201
    [5]
    陈亮 . 零价铁渗透反应格栅中铁的微生物钝化效应及电活化技术[D]. 北京:中国地质大学(北京), 2012.
    [6]
    FU R B, YANG Y P, XU Z , et al. The removal of chromium (Ⅵ) and lead (Ⅱ) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J]. Chemosphere, 2015,138:726-734.
    doi: 10.1016/j.chemosphere.2015.07.051 pmid: 26267258
    [7]
    武甲, 田秀君, 王锦 , 等. 应用纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水[J]. 环境科学, 2010,31(3):645-652.

    WU J, TIAN X J, WANG J , et al. Treatment of Cr(Ⅵ) in deoxygenated simulated groundwater using nanoscale zero-valent iron[J]. Environmental Science, 2010,31(3):645-652.
    [8]
    GRITTINI C, MALCOMSON M, FERNANDO Q , et al. Rapid dechlorination of poly chlorinated-biphenyls on the surface of a Pd/Fe bimetallic system[J]. Environmental Science & Technology, 1995,29(11):2898-2900.
    [9]
    张道萍, 孟凡生, 王业耀 , 等. 双金属和多金属系统对零价铁利用效率的改进[J]. 环境科学研究, 2016,29(9):1362-1369.
    doi: 10.13198/j.issn.1001-6929.2016.09.15

    ZHANG D P, MENG F S, WANG Y Y , et al. Improvement of zero valent iron efficiency by bimetallic system and multi metallic system[J]. Research of Environmental Sciences, 2016,29(9):1362-1369. doi: 10.13198/j.issn.1001-6929.2016.09.15
    [10]
    DONG H R, HE Q, ZENG G M , et al. Chromate removal by surface-modified nanoscale zero-valent iron:effect of different surface coatings and water chemistry[J]. Journal of Colloid and Interface Science, 2016,471:7-13.
    doi: 10.1016/j.jcis.2016.03.011 pmid: 26970032
    [11]
    DONG L, LIN L, LI Q Y , et al. Enhanced nitrate-nitrogen removal by modified attapulgite supported nanoscale zero valent iron treating simulated groundwater[J]. Journal of Environmental Management, 2018,213:151-158.
    doi: 10.1016/j.jenvman.2018.02.073 pmid: 29494931
    [12]
    杨应钊, 刘菲, 孔祥科 , 等. 多介质渗透反应格栅中氨氮的转化与存在形态[J]. 环境工程学报, 2013,7(8):2931-2936.

    YANG Y Z, LIU F, KONG X K , et al. Transformation and existing form of ammonia-N in a multi-media permeable reactive barrier[J]. Chinese Journal of Environmental Engineering, 2013,7(8):2931-2936.
    [13]
    李雅, 张增强, 沈锋 , 等. 堆肥+零价铁可渗透反应墙修复黄土高原地下水中铬铅复合污染[J]. 环境工程学报, 2014,8(1):110-115.

    LI Y, ZHANG Z Q, SHEN F , et al. Remediation of Cr-Pb polluted groundwater using a mixed zero-valent iron-compost permeable reactive barrier in Loess Plateau area[J]. Chinese Journal of Environmental Engineering, 2014,8(1):110-115.
    [14]
    LUO H P, JIN S, FALLGREN P H , et al. Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation[J]. Chemical Engineering Journal, 2010,160(1):185-189.
    doi: 10.1016/j.cej.2010.03.036
    [15]
    CHEN L, JIN S, FALLGREN P H , et al. Electrochemical depassivation of zero-valent iron for trichloroethene reduction[J]. Journal of Hazardous Materials, 2012,239/240:265-269.
    doi: 10.1016/j.jhazmat.2012.08.074 pmid: 23009798
    [16]
    JIN S, FALLGREN P H, MORRIS J M , et al. Degradation of trichloroethene in water by electron supplementation[J]. Chemical Engineering Journal, 2018,140:642-645.
    doi: 10.1016/j.cej.2008.01.035
    [17]
    JIN S, FALLGREN P H . Electrically induced reduction of trichloroethene in clay[J]. Journal of Hazardous Materials, 2010,173:200-204.
    doi: 10.1016/j.jhazmat.2009.08.069 pmid: 19729244
    [18]
    POWELL R M, PLUS R W, HIGHTOWER S K , et al. Coupled iron corrosion and chromate reduction:mechanisms for subsurface remediation[J]. Environmental Science & Technology, 1995,29(8):1913-1922.
    doi: 10.1021/es00008a008 pmid: 22191337
    [19]
    卢欣 . 渗透式反应墙对地下水Cr(Ⅵ)去除及电化学解钝化研究[D]. 北京:清华大学, 2014.

    LU X . Study on Cr(Ⅵ) removal and electrochemical depassivation in a PRB system[D]. Beijing:Tsinghua University, 2014.
    [20]
    POWELL R M, PULS R W . Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron[J]. Environmental Science & Technology, 1997,31(8):2244-2251.
    doi: 10.1021/es9607345
    [21]
    PONDER S M, DARAB J D, MALLOUK T e . Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solution using supported,nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000,34(12):2564-2569.
    [22]
    RITTER K, ODZIEMKOWSKI M S, SIMPGRAGA R , et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron[J]. Journal of Contaminant Hydrology, 2003,65:121-136.
    doi: 10.1016/S0169-7722(02)00234-6 pmid: 12855204
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(781) PDF Downloads(373) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return