Citation: | WU Xin, HE Shuzhuang, LU Yifeng, LU Shaoyong, ZHANG Junpeng, HU Tao, ZHANG Senlin, CHEN Fangxin. Effects of inflow modes on sewage nitrogen removal by ecological gravel beds[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 481-487. doi: 10.3969/j.issn.1674-991X.2018.05.063 |
[1] |
汪俊三. 植物碎石床人工湿地污水处理技术和我的工程案例[M].北京:中国环境科学出版社,2009.
|
[2] |
CHOI J Y,MANIQUIZ-REDILLAS M C,HONG J S,et al.Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff[J].Water Science & Technology.A Journal of the International Association on Water Pollution Research,2015,72(12):2243-2250.
doi: 10.2166/wst.2015.443 pmid: 26676013 |
[3] |
長内武逸. 礫間接触酸化法による河川水の直接浄化[J].用水と廃水,1990,32(8):16-25.
|
[4] |
楠田哲也. 自然の浄化機構の強化と制御[M].東京:技報堂出版,1994.
|
[5] |
侯俊. 生态型河道构建原理及应用技术研究[D].南京:河海大学,2005.
HOU J.Research on the construction theory of ecological river and it’s application technology[D].Nanjing:Hohai University,2005.
|
[6] |
杨星宇,彭润之.碎石床湿地去除城镇污水厂出水中磷的研究[J].地球与环境,2006,34(3):92-96.
YANG X Y, PENG R Z.Study on removal of phosphorus in effluent from town sewage treatment plants by stone wetlands[J].Earth & Environment,2006,34(3):92-96.
|
[7] |
国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
|
[8] |
卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.
LU S Y,JIN X C,YU G.Nitrogen removal mechanism of constructed wetland[J].Ecological Journal,2006,26(8):2670-2677.
|
[9] |
VYMAZAL J.Nitrogen removal in constructed wetlands with horizontal sub-surface flow:can we determine the key process[M]∕∕VYMAZAL J.Nutrient cycling and retention in natural and constructed wetlands. Leiden:Backhuys Publishers,1999:1-17.
|
[10] |
李尚志,唐永琼.利用水生植物对污染水体进行生态修复[J].深圳大学学报理工版,2005,22(3):272-276.
LI S Z,TANG Y Q.Ecological restoration of polluted water bodies by using hydrophyte[J].Journal of Shenzhen University(Science and Engineering), 2005,22(3):272-276.
|
[11] |
WANG J,ZHANG L Y,LU S Y,et al.Contaminant removal from low-concentration polluted river water by the bio-rack wetlands[J].Acta Scientiae Circumstantiae,2012,24(6):1006-1013.
doi: 10.1016/S1001-0742(11)60952-2 pmid: 23505867 |
[12] |
徐德福,李映雪.用于污水处理的人工湿地的基质、植物及其配置[J].湿地科学,2007,5(1):32-38.
XU D F,LI Y X.Screen plants and substrates of the constructed wetland for treatment of wastewater[J].Wetland Science,2007,5(1):32-38.
|
[13] |
成水平,况琪军,夏宜琤.香蒲、灯心草人工湿地的研究:Ⅰ.净化污水的效果[J].湖泊科学,1997,9(4):351-358.
CHENG S P,KUANG Q J,XIA Y Z.Study on effect of purifying wastewater by artificial wetland with Cattail(Typha angustifilia),Rush(Juncus effusus)[J].Journal of Lake Sciences,1997,9(4):351-358.
|
[14] |
李龙山,倪细炉,李志刚,等.5种湿地植物对生活污水净化效果研究[J].西北植物学报,2013,33(11):2292-2300.
LI L S,NI X L,LI Z G,et al.Sewage cleaning abilities of five wetland plants[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(11):2292-2300.
|
[15] |
蒙宽宏,刘延滨,张玲,等.芦苇与香蒲对水中总磷总氮净化能力研究[J].环境科学与管理,2014,39(11):38-40.
MENG K H,LIU Y B,ZHANG L,et al.Study on purification of total phosphorus and total nitrogen in water of reeds and cattails[J].Environmental Science & Management,2014,39(11):38-40.
|
[17] |
吴海明,张建,李伟江,等.人工湿地植物泌氧与污染物降解耗氧关系研究[J].环境工程学报,2010,4(9):1973-1977.
WU H M,ZHANG J,LI W J,et al.Relationship between oxygen release from plants in constructed wetland and oxygen demand for pollutant degradation[J].Chinese Journal of Environmental Engineering,2010,4(9):1973-1977.
|
[18] |
LU S Y,ZHANG P Y,CUI W H.Impact of plant harvesting on nitrogen and phosphorus removal in constructed wetlands treating agricultural region wastewater[J].International Journal of Environment & Pollution,2010,43(4):339-353.
doi: 10.1504/IJEP.2010.036931 |
[19] |
张荣社,周琪,张建,等.潜流构造湿地去除农田排水中氮的研究[J].环境科学,2003,24(4):113-116.
ZHANG R S,ZHOU Q,ZHANG J,et al.Study on nitrogen removal treating agriculture wastewater in subsurface constructed wetland[J].Environmental Science,2003,24(4):113-116.
|
[20] |
REICH P B,OLEKSYN J.Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proceedings of the National Academy of Sciences,2004,101(30):11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326 |
[21] |
XIE X G,DAI C C.Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari[J].Bioresource Technology,2015,179:35-42.
doi: 10.1016/j.biortech.2014.11.112 pmid: 25514400 |
[22] |
XIE X G,HUANG C Y,FU W Q,et al.Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid[J].Fungal Biology,2016,120(3):402.
doi: 10.1016/j.funbio.2015.11.010 pmid: 26895869 |
[23] |
XIE X G,DAI C C.Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari[J].International Biodeterioration & Biodegradation,2015,104:498-507.
doi: 10.1016/j.ibiod.2015.08.004 |
[24] |
秦华,白建峰,徐秋芳,等.丛枝菌根真菌菌丝对土壤微生物群落结构及多氯联苯降解的影响[J].土壤,2015,47(4):704-710.
QIN H,BAI J F,XU Q F,et al.Effect of Arbuscular Mycorrhizal Fungal Hyphae on soil microbial community composition and polychlorinated biphenyls degradation[J].Soils,2015,47(4):704-710.
|
[25] |
焦海华,边高鹏,崔丙健,等.石油污染盐碱土壤棉花根际微生物与石油烃降解关系[J].微生物学通报,2015, 42(8):1501-1511.
JIAO H H,BIAN G P,CUI B J,et al.Correlation between rhizosphere microbial community of Gossypium spp. and petroleum hydrocarbon degradation in the petroleum contaminated saline-alkali soil[J].Journal of Microbiology,2015,42(8):1501-1511.
|
[26] |
KEITH B,PETER G.Macropores and water flow in soils[J].Water Resources Research,1982,18(5):1311-1325.
|
[27] |
GERSBERG R M,ELKINS B V,LYON S R,et al.Role of aquatic plants in wastewater treatment by artificial wetlands[J].Water Research,1986,20(3):363-368.
doi: 10.1016/0043-1354(86)90085-0 |
[28] |
ROGERS K H,BREEN P F,CHICK A J.Nitrogen removal in experimental wetland treatment systems:evidence for the role of aquatic plants[J].Research Journal of the Water Pollution Control Federation,1991,63(7):934-941.
doi: 10.2307/25044090 |
[29] |
唐述虞,吴博成.金属矿酸性废水的湿地生态工程处理研究[J].中国环境科学,1993,13(5):356-360.
TANG S Y,WU B C.Study on the purification of acid wasterwater from metal mine using wetland ecological engineering[J].China Environmental Science,1993,13(5):356-360.
|
[30] |
刘雪. 抗砷细菌及根系有机酸对砷超富集植物蜈蚣草促生及吸砷机理研究[D].南京:南京大学,2017.
LIU X.Arsenic resistant bacteria and root organic acid promoted plant growth and arsenic uptake in As-hyperaccumulator Pteris vittata[D].Najing:Nanjing University,2017.
|
[31] |
王振,张彬彬,向衡,等.垂直潜流人工湿地堵塞及其运行效果影响研究[J].中国环境科学,2015,35(8):2494-2502.
WANG Z,ZHANG B B,XIANG H, et al.Clogging of vertical subsurface flow constructed wetland and its effects on purifying efficiency[J].China Environmental Science,2015,35(8):2494-2502.
|
[32] |
聂志丹,年跃刚,金相灿,等.间歇式运行对人工湿地处理富营养化湖水的影响[J].环境工程学报,2007,1(3):1-4.
NIE Z D,NIAN Y G,JIN X C,et al.Influence of the conditions of batch flow on treating eutrophicated water by constructed wetlands[J].Chinese Journal of Environmental Engineering,2007,1(3):1-4.
|
[33] |
崔玉波,尹军,韩相奎,等.间歇式潜流人工湿地中COD、NH4+-N动态变化特征[J].环境工程,2003,21(3):62-64.
CUI Y B,YIN J,HAN X K,et al.CODCr and NH4+-N dynamic variation characteristics in batch subsurface flow constructed wetland[J].Environmental Engineering,2003,21(3):62-64.
|
[34] |
宋铁红,尹军,崔玉波.不同进水方式人工湿地除污效率对比分析[J].安全与环境工程,2005,12(3):46-48.
SONG T H,YIN J,CUI Y B.Comparison and analysis of the different inflows and effluent ways of constructed wetland for the removal rate of wastewater treatment[J].Safety & Environmental Engineering,2005,12(3):46-48.
|
[35] |
ASELLESOSORIO A,GARCIA J.Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands[J].Science of the Total Environment,2007,378(3):253.
doi: 10.1016/j.scitotenv.2007.02.031 pmid: 17433416 |
[36] |
周斌,宋新山,王宇晖,等.运行方式对潜流人工湿地氧分布及脱氮的影响[J]环境科学与技术,2013(12):110-113.
ZHOU B,SONG X S,WANG Y H,et al.Effect of operation modes of subsurface flow constructed wetlands for spatial distribution of dissolved oxygen and nitrogen removal[J].Environmental Science & Technology,2013(12):110-113.
|
[37] |
张俊朋,陆轶峰,国晓春,等.表面流湿地去除洱海缓冲带低污染水氮模拟研究[J].环境工程技术学报,2018,8(5):488-494.
|
[38] |
ZHANG J P, LU Y F, GUO X C, et al.Nitrogen removal of simulated low-polluted water of Lake Erhai buffer zone by surface-flow wetland[J].Journal of Environmental Engineering Technology,2018,8(5):488-494.
|