Volume 8 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
ZHANG Junpeng, LU Yifeng, GUO Xiaochun, LU Shaoyong, WU Xin. Nitrogen removal of simulated low-polluted water of Lake Erhai buffer zone by surface-flow wetland[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 488-494. doi: 10.3969/j.issn.1674-991X.2018.05.064
Citation: ZHANG Junpeng, LU Yifeng, GUO Xiaochun, LU Shaoyong, WU Xin. Nitrogen removal of simulated low-polluted water of Lake Erhai buffer zone by surface-flow wetland[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 488-494. doi: 10.3969/j.issn.1674-991X.2018.05.064

Nitrogen removal of simulated low-polluted water of Lake Erhai buffer zone by surface-flow wetland

doi: 10.3969/j.issn.1674-991X.2018.05.064
  • Received Date: 2018-05-28
  • Publish Date: 2018-09-20
  • Aiming at the pollution problem of typical low-polluted water (produced by agricultural non-point sources) in Lake Erhai buffer zone, the typical buffer zone mostly occupied by farmland between Baihe Stream and Mei Stream in the western Lake Erhai basin were selected to monitor the surface runoff quality of the buffer zone, and to set up the surface flow pilot wetland for field study. The nitrogen removal effect for simulated low-polluted water of Lake Erhai buffer zone from September 2016 to August 2017 was studied. The results indicate that the pilot system has a high nitrogen removal effect, with annual average removal rate of total nitrogen as Nymphoides peltatum wetland (83.1%) >reed wetland (73.9%) >Hydrilla verticillata wetland (73.3%) >blank wetland (65.5%). The average annual removal rate of ammonia nitrogen was higher than 77%. Among different plant systems, Nymphoides peltatum system has the best removal effect of total nitrogen and the most stable removal rate. The removal rate and width of each system were simulated, and it reveals that the optimum width of the Nymphoides peltatum, Hydrilla verticillata and Phragmites communis wetland systems was respectively 7.04 m, 8.64 m and 6.92 m while the effluent water quality is of class Ⅲ water. The contribution rate of nitrogen removal in Nymphoides peltatum, Hydrilla verticillata and Phragmites communis wetland systems during the test is 5.88%, 3.23% and 21.12%, respectively. The total nitrogen content of reeds in wetlands is significantly higher than that of Nymphoides peltatum and Hydrilla verticillata. The contribution rate of Phragmites communis and Hydrilla verticillata to nitrogen removal in wetland shows a large seasonal difference, while the contribution rate of Nymphoides peltatum in wetland to nitrogen removal in different seasons varies little.

     

  • loading
  • [1]
    封吉猛, 王欣泽, 林燕 , 等. 洱海流域北部入湖河流污染特征分析[J]. 净水技术, 2013,32(5):11-15.

    FENG J M, WANG X Z, LIN Y , et al. Analysis of water pollution characteristics of inflowing rivers into north of Erhai Lake basin[J]. Water Purification Technology, 2013,32(5):11-15.
    [2]
    马根连 . 云南大理苍山十八溪水质监测评价[J]. 人民长江, 2012,43(12):68-70.

    MA G L . Water quality monitoring and evaluation for 18 streams of Cangshan Mountain,Yunnan Province[J]. Yangtze River, 2012,43(12):68-70.
    [3]
    胡威, 王毅力, 储昭升 . 草皮缓冲带对洱海流域面源污染的削减效果[J]. 环境工程学报, 2015,9(9):4138-4144.

    HU W, WANG Y L, CHU Z S . Reduction effect of non-point pollution in Erhai Lake Basin through sward buffer strips[J]. Chinese Journal of Environmental Engineering, 2015,9(9):4138-4144.
    [4]
    卢少勇, 张闻涛, 邢奕 . 洱海10条入湖河流缓冲带三圈内氮含量沿程变化[J]. 中国环境科学, 2016,36(5):1561-1567.

    LU S Y, ZHANG W T, XING Y . Nitrogen evolution with distance of 10 inflow rivers in the three circles of buffer zone around Erhai Lake[J]. China Environmental Science, 2016,36(5):1561-1567.
    [5]
    白献宇, 胡小贞, 庞燕 . 洱海流域低污染水类型、污染负荷及分布[J]. 湖泊科学, 2015,27(2):200-207.

    BAI X Y, HU X Z, PANG Y . Pollution load, distribution and characteristics of low-polluted water in Lake Erhai watershed[J]. Journal of Lake Sciences, 2015,27(2):200-207.
    [6]
    卢中辉, 余斌, 张辉 , 等. 洱海流域农业面源污染与水环境变化的关联分析[J]. 华中师范大学学报(自然科学版), 2017,51(02):215-223.

    LU Z H, YU B, ZHANG H , et al. Correlation analysis of agricultural non-point source pollution and water environment change in Erhai Lake watershed[J]. Journal of Central China Normal University(Natural Sciences), 2017,51(2):215-223.
    [7]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社, 2002.
    [8]
    张山泉, 陈川, 徐沭 , 等. 硫酸-过氧化氢消化法测定植株氮磷钾方法的改进[J].土壤, 2003(2):174-175.

    ZHANG S Q, CHEN C, XU S , et al. Improvement in sulfuric acid hydrogen peroxide assimilating method for determination of NPK in plant[J].Soils, 2003(2):174-175.
    [9]
    卢少勇, 金相灿, 余刚 . 人工湿地的氮去除机理[J]. 生态学报, 2006,26(8):2670-2677.

    LU S Y, JIN X C, YU G . Nitrogen removal mechanism of constructed wetland[J]. Acta Ecologica Sinica, 2006,26(8):2670-2677.
    [10]
    尚会来, 彭永臻, 张静蓉 , 等. 温度对短程硝化反硝化的影响[J]. 环境科学学报, 2009,29(3):516-520.

    SHANG H L, PENG Y Z, ZHANG J R , et al. The effect of temperature on short-cut nitrification and denitrification[J]. Acta Scientiae Circumstantiae, 2009,29(3):516-520.
    [11]
    KANDA R, KISHIMOTO N, HINOBAYASHI J , et al. Effects of recirculation rate of nitrified liquor and temperature on biological nitrification-denitrification process using a trickling filter[J]. Water & Environment Journal, 2016,30(3∕4):190-196.
    doi: 10.1111/wej.12196
    [12]
    关卓今, 李达, 王恩怡 , 等. 人工湿地植物根区氧气来源与进化研究进展[J]. 山东建筑大学学报, 2015,30(6):572-578.

    GUAN Z J, LI D, WANG E Y , et al. Review of research on oxygen source and evolution of constructed wetland plant root zone[J]. Journal of Shandong Jianzhu University, 2015,30(6):572-578.
    [13]
    王苏艳 . 亚铁强化潜流人工湿地反硝化作用及机制[D]. 上海:东华大学, 2016.

    WANG S Y . The influence of Fe 2+ on denitrification in subsurface flow constructed wetlands and its mechanism [D]. Shanghai:Donghua University, 2016.
    [14]
    杨本亮, 毕学军, 葛文杰 , 等. 同步硝化反硝化强化黑水处理系统脱氮性能研究 [J].水处理技术, 2017(11):116-120.

    YANG B L, BI X J, GE W J , et al. Study on the enhancement of nitrogen removal in black water treatment system by simultaneous nitrification and denitrification [J]. Technology of Water Treatment, 2017(11):116-120.
    [15]
    金相灿, 胡小贞, 储昭升 , 等. “绿色流域建设”的湖泊富营养化防治思路及其在洱海的应用[J]. 环境科学研究, 2011,24(11):1203-1209.

    JIN X C, HU X Z, CHU Z S , et al. Green watershed construction strategy for prevention of Lake eutrophication and its application in Lake Erhai[J]. Research of Environmental Sciences, 2011,24(11):1203-1209.
    [16]
    蒋跃平, 葛滢, 岳春雷 , 等. 人工湿地植物对观赏水中氮磷去除的贡献[J]. 生态学报, 2004,24(8):1718-1723.

    JIANG Y P, GE Y, YUE C L , et al. Nutrient removal role of plants in constructed wetland on sightseeing water[J]. Acta Ecologica Sinica, 2004,24(8):1718-1723.
    [17]
    黄蕾, 翟建平, 王传瑜 , 等. 4种水生植物在冬季脱氮除磷效果的试验研究[J]. 农业环境科学学报, 2005,24(2):366-370.

    HUANG L, ZHAI J P, WANG C Y , et al. Removals of nitrogen and phosphorus in Taihu Lake water by four hydrophytes in winter season[J]. Journal of Agro-environmental Science, 2005,24(2):366-370.
    [18]
    陶明煊, 吴国荣, 顾龚平 , 等. Cd对荇菜光合、呼吸速率和ATPase活性的毒害影响[J]. 南京师范大学学报(自然科学版), 2002,25(3):94-98.

    TAO M X, WU G R, GU G P , et al. Toxicity of Cd 2+ on the photosynthetic and respiratory rate and ATPase activity of nymphoides peltatum(Gmel.)O.Ktze [J]. Journal of Nanjing Normal University(Natural Science Edition), 2002,25(3):94-98.
    [19]
    赵家荣, 陈路 . 芦苇和荻的栽培与利用[M]. 北京: 金盾出版社, 2002.
    [20]
    蒋金辉, 周长芳, 安树青 , 等. 工真种轮叶黑藻的组织培养与快速繁殖[J]. 湖泊科学, 2008,20(2):215-220.

    JIANG J H, ZHOU C F, AN S Q , et al. Vast propagation of submerged tool species Hydrilla verticillata with tissue culture method[J]. Journal of Lake Sciences, 2008,20(2):215-220.
    [21]
    陆建兰 . 芦苇与香蒲对富营养化水体中氮磷去除效果的比较[J]. 广东农业科学, 2014,41(9):182-188.

    LU J L . Removal effect comparison of reed and cattail on nitrogen and phosphorus in eutrophic water[J]. Guangdong Agricultural Sciences, 2014,41(9):182-188.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(767) PDF Downloads(514) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return