Citation: | QIN Yadi, WANG Shujuan, ZHUO Yuqun. Progress in catalytic oxidation of elemental mercury by modified SCR catalysts[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 539-545. doi: 10.3969/j.issn.1674-991X.2018.05.071 |
[1] |
郑刘根 . 煤中汞的环境地球化学研究[D]. 合肥:中国科学技术大学, 2008.
ZHENG L G . Environmental geochemistry of mercury in coal[D]. Hefei:University of Science and Technology of China, 2008.
|
[2] |
WU Q, WANG S, LI G , et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science & Technology, 2016,50(24):13428-13435.
doi: 10.1021/acs.est.6b04308 pmid: 27993067 |
[3] |
YING H, DENG M, LI T , et al. Anthropogenic mercury emissions from 1980 to 2012 in China[J]. Environmental Pollution, 2017,226:230-239.
doi: 10.1016/j.envpol.2017.03.059 |
[4] |
环境保护部, 国家质量监督检验检疫总局 .火电厂大气污染物排放标准:GB 13223—2011[S∕OL].( 2017 -09-09)[2018-03-19]..
|
[5] |
张胜军, 许明海, 王莉 , 等. 燃煤锅炉脱汞技术研究进展[J].环境污染与防治, 2014(7):74-79.
ZHANG S J, XU M H, WANG L , et al. Research progress of mercury removal technology for coal-fired boiler[J].Environmental Pollution & Control, 2014(7):74-79.
|
[6] |
STAUDT J E . Control technologies to reduce conventional and hazardous air pollutants from coal-fired power plants[R∕OL].( 2011-03-30)[2018-03-19].. 2011.
|
[7] |
李小健 . 燃煤锅炉烟气脱汞技术的研究与进展[J]. 应用能源技术, 2017(5):28-32.
LI X J . Current advances of mercury removal technology from flue gas in coal-fired boiler[J] .Applied Energy Technology, 2017(5):28-32.
|
[8] |
PAVLISH J H, SONDREAL E A, MANN M D , et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003,82(2∕3):89-165.
doi: 10.1016/S0378-3820(03)00059-6 |
[9] |
殷立宝, 禚玉群, 徐齐胜 , 等. 中国燃煤电厂汞排放规律[J]. 中国电机工程学报, 2013,33(29):1-10.
YIN L B, ZHUO Y Q, XU Q S , et al. Mercury emission from coal-fired power plants in China[J]. Proceedings of the CSEE, 2013,33(29):1-10.
|
[10] |
KAMATA H, UENO S, SATO N , et al. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas[J]. Fuel Processing Technology, 2009,90(7∕8):947-951.
doi: 10.1016/j.fuproc.2009.04.010 |
[11] |
FAN X, LI C, ZENG G , et al. Hg 0 removal from simulated flue gas over CeO2∕HZSM-5 [J]. Energy & Fuels, 2012,26(4):2082-2089.
doi: 10.1021/ef201739p |
[12] |
HRDLICKA J A, SEAMES W S, MANN M D , et al. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environmental Science & Technology, 2008,42(17):6677-6682.
doi: 10.1021/es8001844 pmid: 18800548 |
[13] |
SEAMES W, MANN M, MUGGLI D , et al. Mercury oxidation via catalytic barrier filters phase Ⅱ[R]. Grand Forks:University of North Dakota, 2007.
|
[14] |
GALE T K, LANI B W, OFFEN G R . Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Processing Technology, 2008,89(2):139-151.
doi: 10.1016/j.fuproc.2007.08.004 |
[15] |
GHORISHI S B, LEE C W, JOZEWICZ W S , et al. Effects of fly ash transition metal content and flue gas HCl∕SO2 ratio on mercury speciation in waste combustion[J]. Environmental Engineering Science, 2005,22(2):221-231.
|
[16] |
DUNHAM G E, DEWALL R A, SENIOR C L . Fixed-bed studies of the interactions between mercury and coal combustion fly ash[J]. Fuel Processing Technology, 2003,82(2∕3):197-213.
doi: 10.1016/S0378-3820(03)00070-5 |
[17] |
XU W, WANG H, ZHU T , et al. Mercury removal from coal combustion flue gas by modified fly ash[J]. Journal of Environmental Sciences, 2013,25(2):393-398.
doi: 10.1016/S1001-0742(12)60065-5 pmid: 23596961 |
[18] |
WANG S, ZHANG Y, GU Y , et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016,181:1230-1237.
doi: 10.1016/j.fuel.2016.02.043 |
[19] |
LIVENGOOD C D, MENDELSOHN M H, HUANG H S , et al. Development of mercury control techniques for utility boilers[R]. Illinois:Argonne National Lab, 1995.
|
[20] |
叶群峰, 王成云, 徐新华 , 等. 高锰酸钾吸收气态汞的传质-反应研究[J]. 浙江大学学报(工学版), 2007,41(5):831-835.
YE Q F, WANG C Y, XU X H , et al. Mass transfer-reaction of Hg 0 absorption in potassium permanganate [J]. Journal of Zhejiang University(Engineering Science), 2007,41(5):831-835.
|
[21] |
KO K B, BYUN Y, CHO M , et al. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process[J]. Chemosphere, 2008,71(9):1674-1682.
doi: 10.1016/j.chemosphere.2008.01.015 pmid: 18313101 |
[22] |
PITONIAK E, WU C Y, LONDEREE D , et al. Nanostructured silica-gel doped with TiO2 for mercury vapor control[J]. Journal of Nanoparticle Research, 2003,5(3∕4):281-292.
doi: 10.1023/A:1025582731470 |
[23] |
PUDASAINEE D, LEE S J, LEE S , et al. Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants[J]. Fuel, 2010,89(4):804-809.
doi: 10.1016/j.fuel.2009.06.022 |
[24] |
KAMATA H, UENO S, NAITO T , et al. Mercury oxidation over the V2O5(WO3)∕TiO2 commercial SCR catalyst[J]. Industrial & Engineering Chemistry Research, 2008,47(21):8136-8141.
doi: 10.1021/ie800363g |
[25] |
马步宇, 黄文君, 瞿赞 , 等. 过渡金属元素掺杂改性SCR对零价汞的催化氧化性能[J]. 环境科学研究, 2016,29(3):397-403.
MA B Y, HUANG W J, QU Z , et al. Catalytic oxidation performance of SCR doped with transition metal elements for removal of elemental mercury[J]. Research of Environmental Sciences, 2016,29(3):397-403.
|
[26] |
陈杰, 晏乃强, 瞿赞 , 等. 强化SCR脱硝催化剂转化零价汞的初步研究[J]. 环境科学与技术, 2013,36(5):86-88.
CHEN J, YAN N Q, QU Z , et al. Preliminary study on mercury conversion performance of modified SCR catalyst[J]. Environmental Science & Technology, 2013,36(5):86-88.
|
[27] |
赵莉, 何青松, 李琳 , 等. 改性SCR催化剂对Hg 0催化氧化性能的研究 [J]. 燃料化学学报, 2015,43(5):628-634.
ZHAO L, HE Q S, LI L , et al. Research on the catalytic oxidation of Hg 0 by modified SCR catalysts [J]. Journal of Fuel Chemistry and Technology, 2015,43(5):628-634.
|
[28] |
ZHAO L, LI C, ZHANG J , et al. Promotional effect of CeO2 modified support on V2O5-WO3∕TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015,153:361-369.
doi: 10.1016/j.fuel.2015.03.001 |
[29] |
CHI G, SHEN B, YU R , et al. Simultaneous removal of NO and Hg 0 over Ce-Cu modified V2O5∕TiO2 based commercial SCR catalysts [J]. Journal of Hazardous Materials, 2017,330:83-92.
doi: 10.1016/j.jhazmat.2017.02.013 pmid: 28212513 |
[30] |
YAN N, CHEN W, CHEN J , et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environmental Science & Technology, 2011,45(13):5725-5730.
doi: 10.1021/es200223x pmid: 21662986 |
[31] |
ZHAO S, XU H, MEI J , et al. Ag-Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range[J]. Fuel, 2017,200:236-243.
|
[32] |
WANG H, WANG B, SUN Q , et al. New insights into the promotional effects of Cu and Fe over V2O5-WO3∕TiO2 NH3-SCR catalysts towards oxidation of Hg 0 [J]. Catalysis Communications, 2017,100:169-172.
doi: 10.1016/j.catcom.2017.06.036 |
[33] |
HUANG W, XU H, QU Z , et al. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas[J]. Fuel Processing Technology, 2016,149:23-28.
doi: 10.1016/j.fuproc.2016.04.007 |
[34] |
REDDY B M, KHAN A, YAMADA Y , et al. Structural characterization of CeO2-TiO2 and V2O5∕CeO2-TiO2 catalysts by Raman and XPS techniques[J]. Journal of Physical Chemistry B, 2003,107(22):5162-5167.
doi: 10.1021/jp0344601 |
[35] |
池桂龙, 沈伯雄, 朱少文 , 等. 改性SCR催化剂对单质汞氧化性能的研究[J]. 燃料化学学报, 2016,44(6):763-768.
CHI G L, SHEN B X, ZHU S W , et al. Oxidation of elemental mercury over modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2016,44(6):763-768.
|
[36] |
LI H, WU C, LI Y , et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011,45(17):7394-7400.
doi: 10.1021/es2007808 pmid: 21770402 |
[37] |
XU W, HE H, YU Y . Deactivation of a Ce∕TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. Journal of Physical Chemistry C, 2009,113(11):4426-4432.
doi: 10.1021/jp8088148 |
[38] |
GAO X, JIANG Y, ZHONG Y , et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2010,174(1∕2∕3):734-739.
doi: 10.1016/j.jhazmat.2009.09.112 pmid: 19837510 |
[39] |
LI H, WU C, LI Y , et al. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. Journal of Hazardous Materials, 2012,243:117-123.
doi: 10.1016/j.jhazmat.2012.10.007 pmid: 23131500 |
[40] |
WANG F, SHEN B, GAO L , et al. Simultaneous removal of NO and Hg 0 from oxy-fuel combustion flue gas over CeO2-modified low-V2O5-based catalysts [J]. Fuel Processing Technology, 2017,168:131-139.
doi: 10.1016/j.fuproc.2017.08.024 |
[41] |
ZHAO L, LI C, LI S , et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5∕ZrO2-CeO2 catalyst[J]. Applied Catalysis B:Environmental, 2016,198:420-430.
doi: 10.1016/j.apcatb.2016.05.079 |
[42] |
ZHOU J, HOU W, QI P , et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J]. Environmental Science & Technology, 2013,47(17):10056-10062.
doi: 10.1021/es401681y pmid: 23931010 |
[43] |
LI H, WU C, LI Y , et al. Superior activity of MnOx-CeO2∕TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B:Environmental, 2012,111:381-388.
doi: 10.1016/j.apcatb.2011.10.021 |
[44] |
胡长兴, 周劲松, 何胜 , 等. SCR氮氧化物脱除系统对燃煤烟气汞形态的影响[J]. 热能动力工程, 2009,24(4):499-502.
HU C X, ZHOU J S, HE S , et al. Influence of the SCR (selective catalytic reduction)-based NOx removal system on mercury morphology in coal-fired flue gas[J]. Journal of Engineering for Thermal Energy and Power, 2009,24(4):499-502.
|
[45] |
EOM Y, JEON S H, NGO T A , et al. Heterogeneous mercury reaction on a selective catalytic reduction(SCR) catalyst[J]. Catalysis Letters, 2008,121(3∕4):219-225.
doi: 10.1007/s10562-007-9317-0 |
[46] |
PRESTO A A, GRANITE E J . Survey of catalysts for oxidation of mercury in flue gas[J]. Environmental Science & Technology, 2006,40(18):5601-5609.
doi: 10.1021/es060504i pmid: 17007115 |
[47] |
KAMATA H, UENO S, NAITO T , et al. Mercury oxidation by hydrochloric acid over a VOx∕TiO2 catalyst[J]. Catalysis Communications, 2008,9(14):2441-2444.
doi: 10.1016/j.catcom.2008.06.010 |
[48] |
姜英 . 我国煤中氯的分布及其分级标准[J].煤质技术, 1998(5):7-8.
|
[49] |
睢辉, 张梦泽, 董勇 , 等. CaCl2改性选择性催化还原催化剂氧化汞的实验与机理研究[J]. 中国电机工程学报, 2014,34(26):4469-4475.
SUI H, ZHANG M Z, DONG Y , et al. Experimental and mechanism study on mercury oxidation by selective catalytic reduction catalyst modified by calcium chloride[J]. Proceedings of the CSEE, 2014,34(26):4469-4475.
|
[50] |
程广文, 张强, 白博峰 . 一种改性选择性催化还原催化剂及其对零价汞的催化氧化性能[J]. 中国电机工程学报, 2015,35(3):623-630.
CHENG G W, ZHANG Q, BAI B F . A modified selective catalytic reduction catalyst and its catalytic oxidation for Hg 0 [J]. Proceedings of the CSEE, 2015,35(3):623-630.
|
[51] |
杜雯, 禚玉群, 张亮 , 等. 过渡金属卤化物改性非碳基吸附剂脱汞研究[J]. 工程热物理学报, 2011,32(7):1236-1240.
DU W, ZHUO Y Q, ZHANG L , et al. Experimental study on mercury efficiencies transient metal halides impregnated non-carbon sorbents[J]. Journal of Engineering Thermophysics, 2011,32(7):1236-1240.
|