Citation: | ZHAO Wenyi, XIA Lisha, GAO Guangkuo, CHENG Li. PM2.5 prediction model based on weighted KNN-BP neural network[J]. Journal of Environmental Engineering Technology, 2019, 9(1): 14-18. doi: 10.3969/j.issn.1674-991X.2019.01.003 |
[1] |
王金南 . 控制PM2.5污染:中国路线图与政策机制[M]. 北京: 科学出版社, 2016.
|
[2] |
李岚淼, 李龙国, 李乃稳 . 城市雾霾成因及危害研究进展[J]. 环境工程, 2017,35(12):92-97.
LI L M, LI L G, LI N W . Studies review on cause and damage of urban haze[J]. Environmental Engineering, 2017,35(12):92-97.
|
[3] |
杨继东, 章逸然 . 空气污染的定价:基于幸福感数据的分析[J]. 世界经济, 2014,37(12):162-188.
|
[4] |
LEE K H, KIM Y J, KIM M J . Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006,40(27):5146-5155.
doi: 10.1016/j.atmosenv.2006.03.050 |
[5] |
彭斯俊, 沈加超, 朱雪 . 基于ARIMA模型的PM2.5预测[J]. 安全与环境工程, 2014,21(6):125-128.
doi: 10.3969/j.issn.1671-1556.2014.06.023 PENG S J, SHEN J C, ZHU X . Forecast of PM2.5 based on the ARIMA model[J]. Safety and Environmental Engineering, 2014,21(6):125-128. doi: 10.3969/j.issn.1671-1556.2014.06.023
|
[6] |
黄思, 唐晓, 徐文帅 , 等. 利用多模式集合和多元线性回归改进北京PM10预报[J]. 环境科学学报, 2015,35(1):56-64.
doi: 10.13671/j.hjkxxb.2014.0728 HUANG S, TANG X, XU W S , et al. Application of ensemble forecast and linear regression method in improving PM10 forecast over Beijing areas[J]. Acta Scientiae Circumstantiae, 2015,35(1):56-64. doi: 10.13671/j.hjkxxb.2014.0728
|
[7] |
艾洪福, 潘贺, 李迎斌 . 关于空气雾霾PM2.5含量预测优化研究[J]. 计算机仿真, 2017,34(1):392-395.
doi: 10.3969/j.issn.1006-9348.2017.01.085 AI H F, PAN H, LI Y B . Research on optimization of PM2.5 content prediction in air haze[J]. Computer Simulation, 2017,34(1):392-395. doi: 10.3969/j.issn.1006-9348.2017.01.085
|
[8] |
孙宝磊, 孙暠, 张朝能 , 等. 基于BP神经网络的大气污染物浓度预测[J]. 环境科学学报, 2017,37(5):1864-1871.
doi: 10.13671/j.hjkxxb.2016.0391 SUN B L, SUN H, ZHANG C N , et al. Forecast of air pollutant concentrations by BP neural network[J]. Acta Scientiae Circumstantiae, 2017,37(5):1864-1871. doi: 10.13671/j.hjkxxb.2016.0391
|
[9] |
DÍAZ-ROBLES L A, ORTEGA J C, FU J S , et al. A hybrid ARIMA and artificial neural networksmodel to forecast particulate matter in urban areas:the case of Temuco,Chile[J]. Atmospheric Environment, 2008,42:8331-8340.
doi: 10.1016/j.atmosenv.2008.07.020 |
[10] |
艾洪福, 石莹 . 基于BP人工神经网络的雾霾天气预测研究[J]. 计算机仿真, 2015,32(1):402-405.
doi: 10.3969/j.issn.1006-9348.2015.01.085 AI H F, SHI Y . Study on prediction of haze based on BP neural network[J]. Computer Simulation, 2015,32(1):402-405. doi: 10.3969/j.issn.1006-9348.2015.01.085
|
[11] |
赵晨曦, 王云琦, 王玉杰 , 等. 北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J]. 环境科学, 2014,35(2):418-427.
ZHAO C X, WANG Y Q, WANG Y J , et al. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing[J]. Environmental Science, 2014,35(2):418-427.
|
[12] |
刘金培, 汪官镇, 陈华友 , 等. 基于VAR模型的PM2.5与其影响因素动态关系研究:以西安市为例[J]. 干旱区资源与环境, 2016,30(5):78-84.
doi: 10.13448/j.cnki.jalre.2016.151 LIU J P, WANG G Z, CHEN H Y , et al. Dynamic relationship between PM2.5 and its influence factors in Xi’an City based on the VAR model[J]. Journal of Arid Land Resources and Environment, 2016,30(5):78-84. doi: 10.13448/j.cnki.jalre.2016.151
|
[13] |
迈尔·舍恩伯格, 库克耶 . 大数据时代[M]. 杭州: 浙江人民出版社, 2013.
|
[14] |
潘竟虎, 张文, 王春娟 . 2011—2013年中国雾霾易发生期间API的分布格局[J]. 环境工程学报, 2016,10(3):1340-1348.
PAN J H, ZHANG W, WANG C J . Spatial pattern of urban air pollution during large-scale range haze based on fractal net evolution approach and GIS in China[J]. Chinese Journal of Environmental Engineering, 2016,10(3):1340-1348.
|
[15] |
杨健, 宋冰, 谭帅 , 等. 时序约束NPE算法在化工过程故障检测中的应用[J]. 化工学报, 2016,67(12):5131-5139.
doi: 10.11949/j.issn.0438-1157.20160543 YANG J, SONG B, TAN S , et al. Time constrained NPE for fault detection in chemical processes[J]. CIESC Journal, 2016,67(12):5131-5139. doi: 10.11949/j.issn.0438-1157.20160543
|
[16] |
王钰, 郭其一, 李维刚 . 基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制, 2005(1):39-42.
doi: 10.3321/j.issn:1671-4598.2005.01.013 WANG Y, GUO Q Y, LI W G . Predictive model based on improved BP neural networks and it’s application[J].Computer Measurement & Control,2005(1):39-42. doi: 10.3321/j.issn:1671-4598.2005.01.013
|
[17] |
ZHENG Y, YI X W, LI M , et al. Forecasting fine-grained air quality based on big data[M]. Sydney:Association for Computing Machinery, 2015: 1231-1239.
|
[18] |
ZHENG Y, CAPRA L, WOLFSON O , et al. Urban computing:concepts,methodologies and applications[J]. ACM Transaction on Intelligent Systems and Technology, 2014,5(3):1-55.
doi: 10.1145/2629592 |
[19] |
ZHENG Y, LIU F R, HSIEH H P .U-air:when urban air quality inference meets big data[M].Chicago:Association for Computing Machinery, 2013: 1436-1444.
|