Effects of thermal treatment on properties and ecological functions of contaminated soil
-
摘要: 因为具有良好的处理效果和较短的施工周期,热处理是目前污染场地修复领域应用的热点技术之一,厘清热处理对土壤性质及功能的综合影响对于评价土壤价值具有重要意义。在分析了大量相关研究与应用案例的基础上,总结了热处理修复技术对土壤有机质、pH、营养组分等理化性质的影响,阐述了热处理对土壤微生物、动物以及植物的生态影响,分析了热处理过程对土壤污染物的衍生物产生以及复合污染修复效果的影响,探讨了热处理对土壤的综合影响及其对实际修复工程的指导意义,并对未来热处理在污染场地修复应用中的研究重点和方向提出了展望。Abstract: Thermal treatment is one of the hot technologies in the field of contaminated site remediation due to the advantages of good treatment efficiency and short construction period, therefore, it is of great significance to clarify the comprehensive impacts of thermal treatment on the soil properties and ecological functions for the assessment the soil values after treatment. Based on the analysis of a large number of relevant research and application cases, the impacts of thermal treatment remediation technology on the physical and chemical properties like soil organic matter, pH, nutrient components, together with the ecological effects on soil microorganisms, soil animals and plants exposed to the treated soil were summarized. The effects of thermal treatment process on the soil contaminant derivatives and the remediation efficiency for combined pollution were analyzed. Finally, the comprehensive effect of thermal treatment on soil and its guiding significance for practical remediation engineering were discussed. The key research focuses and directions of thermal treatment in the field application in the future were analyzed.
-
Key words:
- thermal treatment /
- soil properties /
- thermal desorption /
- soil function /
- thermal remediation
-
[1] 骆永明. 中国土壤污染与修复研究二十年[M]. 北京: 科学出版社, 2017. [2] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018,38(3):1185-1193.LI Y J, WANG S J, ZHANG M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018,38(3):1185-1193. [3] 郝丽虹, 张世晨, 武志花, 等. 低山丘陵区焦化厂土壤中PAHs空间分布特征[J]. 中国环境科学, 2018,38(7):2625-2631.HAO L H, ZHANG S C, WU Z H, et al. Spatial distribution characteristics of PAHs in soil at hilly areal coking plant[J]. China Environmental Science, 2018,38(7):2625-2631. [4] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019,13(9):2027-2036.JIAO W T, HAN Z Y, LÜ Z Y, et al. Key issue and expectation of soil electrical resistance heating remediation technology[J]. Chinese Journal of Environmental Engineering, 2019,13(9):2027-2036. [5] 张学良, 李群, 周艳, 等. 某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报, 2018,38(7):2868-2875.ZHANG X L, LI Q, ZHOU Y, et al. In-situ remediation of organics-contaminanted site by gas thermal desorption at a retired solvent plant[J]. Acta Scientiae Circumstantiae, 2018,38(7):2868-2875. [6] 隋红, 李洪, 李鑫钢, 等. 有机污染土壤和地下水修复[M]. 北京: 科学出版社, 2013. [7] 赵中华. 含氯有机污染土壤热脱附及联合处置研究[D]. 杭州:浙江大学, 2018. [8] 赵涛, 马刚平, 周宇, 等. 多环芳烃类污染土壤热脱附修复技术应用研究[J]. 环境工程, 2017(11):183-186.ZHAO T, MA G P, ZHOU Y, et al. Thermal desorption technology applied to repair PAHs contaminated soil[J]. Environmental Engineering, 2017(11):183-186. [9] 杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程技术学报, 2016,6(6):559-570.YANG Y, HUANG H, CHEN M P, et al. Development and application of ex-situ thermal desorption technology in organic pollutants contaminated field remediation[J]. Journal of Environmental Engineering Technology, 2016,6(6):559-570. [10] 迟克宇, 李传维, 籍龙杰, 等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019,13(9):2049-2059.CHI K Y, LI C W, JI L J, et al. Application effect of in-situ electric thermal desorption technology used in remediation at an organics-contaminated site[J]. Chinese Journal of Environmental Engineering, 2019,13(9):2049-2059. [11] 王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018,59(3):182-186.WANG J H. Application of in-situ thermal desorption technology for remediation of an organic contaminated site[J]. Chemistry World, 2018,59(3):182-186. [12] 杨振, 靳青青, 衣桂米, 等. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019,13(9):2083-2091.YANG Z, JIN Q Q, YI G M, et al. Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019,13(9):2083-2091. [13] SONG W, VIDONISH J E, KAMATH R, et al. Pilot-scale pyrolytic remediation of crude-oil-contaminated soil in a continuously-fed reactor:treatment intensity trade-off[J]. Environmental Science and Technology, 2019,53:2045-2053. [14] OBRIEN P L, DESUTTER T M, CASEY F X M, et al. Wheat growth in soils treated by ex situ thermal desorption[J]. Journal of Environmental Quality, 2017,46:897-905. [15] HAN Z Y, JIAO W T, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating:removal efficiency and alteration of soil properties[J]. Chemosphere, 2020,239(124):1-8. [16] 沈宗泽, 陈有鑑, 李书鹏, 等. 异位热脱附技术与设备在我国污染场地修复工程中的应用[J]. 环境工程学报, 2019,13(9):2060-2073.SHEN Z Z, CHEN Y J, LI S P, et al. Application of ex-situ thermal desorption technology and equipment in contaminated site remediation projects in China[J]. Chinese Journal of Environmental Engineering, 2019,13(9):2060-2073. [17] ALTENBURGER A, BENDER M, EKELUND F. Steam-treatment-based soil remediation promotes heat-tolerant,potentially pathogenic microbiota[J]. Environmental Technology, 2014,35(6):773-780. [18] VIDONISH J E, ALVAREZ P J J, ZYGOURAKIS K. Pyrolytic remediation of oil-contaminated soils:reaction mechanisms,soil changes,and implications for treated soil fertility[J]. Industrial and Engineering Chemistry Research, 2018,57(10):3489-3500. [19] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science and Technology, 2016,50(5):2498-506. [20] LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science and Technology, 2018,52(9):5330-5338.
pmid: 29660977[21] 生态环境部,国家市场监督管理局 土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600—2018[S]. 北京: 中国环境科学出版社, 2018. [22] 赵拓坤, 赵楠, 肖雪, 等. 热处理对土壤中重金属的浸出浓度变化规律的影响研究[C]// 第10届全国环境化学大会论文集. 天津: 南开大学, 2016. [23] PAPE A, SWITZER C, MCCOSH N, et al. Impacts of thermal and smouldering remediation on plant growth and soil ecology[J]. Geoderma 2015,243/244:1-9. [24] 李德昌. 生物质快速热解过程中有机挥发分向合成气和功能碳材料的催化转化[D]. 合肥:中国科学技术大学, 2019. [25] 陈春红, 李方洲, 陈振焱, 等. 不同类型土壤中分段石油烃的异位热脱附行为及土壤理化性质变化[C]// 2019年中国土壤学会土壤环境专业委员会、土壤化学专业委员会联合学术研讨会论文摘要集. 西安: 中国土壤学会土壤环境专业委员会, 2019. [26] 夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报, 2014,65(4):1470-1480.XIA T X, JIANG L, WEI M, et al. PAHs thermal desorption behavior of coking plant soil and its effect on soil characteristics[J]. Journal of Chemical Industry and Engineering(China), 2014,65(4):1470-1480. [27] YI Y M, PARK S, MUNSTER C, et al. Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment[J]. Water Air and Soil Pollution, 2016,227:100-108. [28] SCHMIDT W I M, TORN M, ABIVEN S. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011,478:49-56. [29] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020,53(2):317-331.ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica, 2020,53(2):317-331. [30] HUANG Y T, HSEU Z Y, HIS H C. Influences of thermal decontamination on mercury removal,soil properties and repartitioning of coexisting heavy metals[J]. Chemosphere, 2011,84:1244-1249.
pmid: 21624629[31] TEREFE T, MARISCAL S I, PEREGRINA F, et al. Influence of heating on various properties of six Mediterranean soils:a laboratory study[J]. Geoderma, 2008,143:273-280. [32] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005,24(12):1499-1502.HAN C M, WANG L S, GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005,24(12):1499-1502. [33] REN J Q, SONG X, DING D. Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment:improved energy efficiency and soil reusability[J]. Chemosphere, 2020,241:1-8. [34] OBRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties:a review[J]. Journal of Environmental Management, 2018,206:826-835. [35] HSEU Z Y, HUANG Y T, HSI H C. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury[J]. Journal of the Air and Waste Management Association, 2014,64(9):1013-1020. [36] 杨悦锁, 陈煜, 李盼盼, 等. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J]. 化工学报, 2017,68(6):2219-2232.YANG Y S, CHEN Y, LI P P, et al. Research progress on co-contamination and remediation of heavy metals and polycyclic aromatic hydrocarbons in soil and groundwater[J]. Journal of Chemical Industry and Engineering(China), 2017,68(6):2219-2232. [37] BONNARD M, DEVIN S, LEYVAL C, et al. The influence of thermal desorption on genotoxicity of multipolluted soil[J]. Ecotoxicology and Environmental Safety, 2010,73:955-960.
doi: 10.1016/j.ecoenv.2010.02.023 pmid: 20236704[38] 权胜祥. 电子垃圾酸洗区土壤重金属污染特征及其热处理研究[D]. 广州:中国科学院广州地球化学研究所, 2015. [39] 郭子逸, 邵敬爱, 王贤华, 等. 污泥微波热解过程重金属转化特性与风险评估[J]. 环境工程学报, 2017,11(3):1801-1806.GUO Z Y, SHAO J A, WANG X H, et al. Transformation characteristic of heavy metals during microwave pyrolysis of sewage sludge and risk assessment[J]. Chinese Journal of Environmental Engineering, 2017,11(3):1801-1806. [40] 谢胜禹, 余广炜, 李杰, 等. 污泥水热联合热解处理对固相产物中重金属的影响[J]. 环境工程学报, 2018,12(7):2114-2122.XIE S Y, YU G W, LI J, et al. Effects of hydro-thermal treatment coupled pyrolysis on heavy metals in solid products from sewage sludge[J]. Chinese Journal of Environmental Engineering, 2018,12(7):2114-2122. [41] TRINE L S D, DAVIS E L, ROPER C, et al. Formation of PAH derivatives and increased developmental toxicity during steam enhanced extraction remediation of creosote contaminated superfund soil[J]. Environmental Science and Technology, 2019,53(8):4460-4469.
doi: 10.1021/acs.est.8b07231 pmid: 30957485[42] ZHAO L, HOU H, SHIMODA K, et al. Formation pathways of polychlorinated dibenzofurans (PCDFs) in sediments contaminated with PCBs during the thermal desorption process[J]. Chemosphere, 2012,88(11):1368-1374. [43] SATO T, TODOROKI T, SHIMODA K, et al. Behavior of PCDDs/PCDFs in remediation of PCBs-contaminated sediments by thermal desorption[J]. Chemosphere, 2010,80(2):184-189.
doi: 10.1016/j.chemosphere.2010.02.055 pmid: 20382407[44] WEBER R, SAKURAI T. Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics[J]. Applied Catalysis B:Environmental, 2001,34(2):113-127. [45] 邓欢, 郭光霞, 乔敏. 多环芳烃污染土壤毒性评价指标的研究进展[J]. 生态毒理学报, 2009,4(1):1-13.DENG H, GUO G X, QIAO M. Advances in the biological indicators for toxicity assessment of polycyclic aromatic hydrocarbons contaminated soil:a review[J]. Asian Journal of Eco-toxicology, 2009,4(1):1-13. [46] 许霞, 薛银刚, 刘菲, 等. 废弃农药厂污染场地土壤浸出液的急性毒性和遗传毒性筛查[J]. 生态毒理学报, 2017,12(6):223-232.XU X, XUE Y G, LIU F, et al. Screening of acute toxicity and genetic toxicity of soil leachates from abandoned pesticide factory contaminated site[J]. Asian Journal of Eco-toxicology, 2017,12(6):223-232. [47] 张倩倩, 乔敏, 池海峰. 土壤生态毒性测试方法综述[J]. 生态毒理学报, 2017,12(4):76-97.ZHANG Q Q, QIAO M, CHI H F. Overview of soil ecotoxicity tests[J]. Asian Journal of Eco-toxicology, 2017,12(4):76-97. [48] TOM P. Heat-enhanced bioremediation and destruction[R]. Washington DC:TRS Group, 2019. [49] MARCET T F, CAPIRO N L, YANG Y, et al. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions[J]. Water Research, 2018,145:21-29. [50] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A, Low-temperature thermal desorption of diesel polluted soil:influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011,185:392-400.
pmid: 20940088
点击查看大图
计量
- 文章访问数: 647
- HTML全文浏览量: 148
- PDF下载量: 155
- 被引次数: 0