留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河流污染底泥原位覆盖材料及其应用研究进展

陈重军 潘钰伟 谢嘉玮 谢军祥

陈重军,潘钰伟,谢嘉玮,等.河流污染底泥原位覆盖材料及其应用研究进展[J].环境工程技术学报,2022,12(1):100-109 doi: 10.12153/j.issn.1674-991X.20210107
引用本文: 陈重军,潘钰伟,谢嘉玮,等.河流污染底泥原位覆盖材料及其应用研究进展[J].环境工程技术学报,2022,12(1):100-109 doi: 10.12153/j.issn.1674-991X.20210107
CHEN C J,PAN Y W,XIE J W,et al.Research progress of in situ covering materials for river polluted sediment and their applications[J].Journal of Environmental Engineering Technology,2022,12(1):100-109 doi: 10.12153/j.issn.1674-991X.20210107
Citation: CHEN C J,PAN Y W,XIE J W,et al.Research progress of in situ covering materials for river polluted sediment and their applications[J].Journal of Environmental Engineering Technology,2022,12(1):100-109 doi: 10.12153/j.issn.1674-991X.20210107

河流污染底泥原位覆盖材料及其应用研究进展

doi: 10.12153/j.issn.1674-991X.20210107
基金项目: 国家自然科学基金项目(51508366);江苏省自然科学基金项目(BK20201450);江苏省“青蓝工程”;苏州市民生科技项目(SS202016,SS2019022);江苏水处理技术与材料协同创新中心预研项目(XTCXSZ2019-3);江苏省环境科学与工程重点实验室开放基金项目(Zd1804)
详细信息
    作者简介:

    陈重军(1984—),男,副教授,博士,研究方向为废水生物处理技术与机制,chongjunchen@163.com

  • 中图分类号: X522

Research progress of in situ covering materials for river polluted sediment and their applications

  • 摘要: 原位覆盖技术是控制底泥污染的重要手段之一,覆盖材料的选择和优化作为技术核心是研究热点。综述了污染底泥原位覆盖技术的主要原理,介绍了过氧化钙、沸石、生物炭3种目前常用的覆盖材料的修复机制和修复效能。针对单一覆盖材料存在的目标污染物选择性弱、污染物二次释放、材料消耗速率过快、修复周期短等缺点,提出采用改性剂进行改性或多种覆盖材料联用的方法,可有效延长覆盖材料处理时效,避免污染物短期抑制后再次释放,提高覆盖材料对底泥污染物的修复效能,并综述了覆盖材料改性工艺及多种覆盖材料联用工艺修复污染底泥的优势和应用前景。同时,提出将来可在多种覆盖材料联用、覆盖材料的收集回用及降低生态风险等方面进一步开展研究。

     

  • 图  1  原位覆盖技术原理示意[19]

    Figure  1.  Basic principle of in situ covering technology

    图  2  生物炭去除底泥中重金属的机制

    Figure  2.  Mechanism of biochar removal of heavy metals from sediment

    表  1  制备CP缓释氧剂的不同材料

    Table  1.   Different materials for preparation of calcium peroxide sustained release oxygen agent

    制备产物 包埋材料 主要目标污染物 释氧周期/d 数据来源
    CP@PEG2000-SA缓释氧珠 聚乙二醇2000、硬脂酸 Al-P、Fe-P 35 文献[52]
    沸石-CP缓释氧珠 沸石 NH4 +-N 21 文献[53]
    海藻酸盐缓释氧珠 Al3+、海藻酸盐 10 文献[54]
    CP混凝土 水泥:砂:粉煤灰:氯化铵:磷酸钾:水(质量比)为1.4:0.7:1.3:0.7:0.8:2.0 PCE 100 文献[55]
    竹生物炭-聚乙烯醇珠 柠檬酸盐:聚乙烯醇:竹制生物炭(质量比)为2.22:9.23:31.50 甲苯、二甲苯 104 文献[56]
    下载: 导出CSV

    表  2  不同改性沸石的改性材料及覆盖效果

    Table  2.   Modified materials and covering effect of different modified zeolite

    改性方法 改性材料 目标污染物 改性效果 数据来源
    酸改性 HCl Al2+ 极端孔径降至0.023 mL/g,Al2+吸附效能提升40% 文献[62]
    碱改性 NaOH NH4 +-N 吸附容量提升至改性前的2倍(28.35 mg/g) 文献[63]
    镧改性 吸附持续性增加(20 d),最大吸附量增加2 mg/g 文献[60]
    锆镧改性 FeSO4·7H2O、
    ZrOCl2·8H2O
    PO4 3−-P 吸附量高于锆改性、镧改性 文献[66]
    下载: 导出CSV

    表  3  不同改性生物炭的覆盖效果

    Table  3.   Covering effect of different modified biochar

    改性方法 改性材料 改性效果 目标污染物 改性后去除效能 数据来源
    酸改性 HCl 比表面积增加29.7 m2/g 五氯苯酚(C6HCl5O) 去除率提升23.2% 文献[70]
    碱改性 20%KOH+10%NaOH 增加乳糖基、酚基、羧基 Cu2+、Pb2+ 去除率提升35% 文献[71]
    超声波改性 硫酸+超声波 含氧官能团增至改性前1.7倍,
    比表面积增加5.1倍
    Cr(Ⅵ) 最大吸附量提高17.8 mg/g 文献[72]
    紫外辐射改性 紫外辐射 极性基团增加 苯、甲苯 吸附量分别提高115.53、
    228.38 mg/g
    文献[74]
    金属改性 Al(OH)3 Pb2+ 吸附量提高36.82 mg/g 文献[75]
    下载: 导出CSV
  • [1] JABŁOŃSKA-CZAPLA M, ZERZUCHA P, GRYGOYĆ K. Impact of river water and bottom sediment pollution on accumulation of metal(loid)s and arsenic species in the coastal plants Stuckenia pectinata L., Galium aparine L., and Urtica dioica L. : a chemometric and environmental study[J]. Archives of Environmental Contamination and Toxicology,2020,79(1):60-79. doi: 10.1007/s00244-020-00727-w
    [2] 郭赟, 黄晓峰, 李海妮, 等.城市河道环保疏浚与水利疏浚效果研究: 以无锡市梁塘河薛家浜为例[J]. 环境工程技术学报,2020,10(3):400-405. doi: 10.12153/j.issn.1674-991X.20190104

    GUO Y, HUANG X F, LI H N, et al. Study on the effect of urban river environmental dredging and hydraulic dredging: taking Xuejiabang, Liangtang River of Wuxi as an example[J]. Journal of Environmental Engineering Technology,2020,10(3):400-405. doi: 10.12153/j.issn.1674-991X.20190104
    [3] 胡易坤, 刘超, 吴林骏, 等.水体底泥污染物理覆盖材料选择及其污染阻断效果研究[J]. 安徽农业科学,2020,48(11):67-70. doi: 10.3969/j.issn.0517-6611.2020.11.021

    HU Y K, LIU C, WU L J, et al. Selection of material for sediment pollution control in situ and its pollution blocking mechanism[J]. Journal of Anhui Agricultural Sciences,2020,48(11):67-70. doi: 10.3969/j.issn.0517-6611.2020.11.021
    [4] 邹彦江. 重金属污染底泥原位覆盖技术研究[D]. 济南: 山东建筑大学, 2015.
    [5] BORTONE I, LABIANCA C, TODARO F, et al. Experimental investigations and numerical modelling of in situ reactive caps for PAH contaminated marine sediments[J]. Journal of Hazardous Materials,2020,387:121724. doi: 10.1016/j.jhazmat.2019.121724
    [6] 王广召, 方涛, 唐巍, 等.疏浚对巢湖重污染入湖河流沉积物中污染物赋存及释放的影响[J]. 湖泊科学,2014,26(6):837-843. doi: 10.18307/2014.0604

    WANG G Z, FANG T, TANG W, et al. Long-term effects of dredging on pollutant distribution in sediments of a heavily polluted inflow river[J]. Journal of Lake Sciences,2014,26(6):837-843. doi: 10.18307/2014.0604
    [7] HUANG C Y, HUANG H L, QIN P F. In-situ immobilization of copper and cadmium in contaminated soil using acetic acid-eggshell modified diatomite[J]. Journal of Environmental Chemical Engineering,2020,8(4):103931. doi: 10.1016/j.jece.2020.103931
    [8] ZHU L, LI X, ZHANG C, et al. Pollutants' release, redistribution and remediation of black smelly river sediment based on re-suspension and deep aeration of sediment[J]. International Journal of Environmental Research and Public Health,2017,14(4):374. doi: 10.3390/ijerph14040374
    [9] 倪茂飞, 田书磊, 黄启飞, 等.电动力学作用下污染土壤中HCHs的迁移特征[J]. 环境科学研究,2015,28(11):1693-1701.

    NI M F, TIAN S L, HUANG Q F, et al. Migration characteristics of HCHs in contaminated soil by electrokinetics[J]. Research of Environmental Sciences,2015,28(11):1693-1701.
    [10] USTAOĞLU F, TEPE Y. Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators[J]. International Soil and Water Conservation Research,2019,7(1):47-56. doi: 10.1016/j.iswcr.2018.09.001
    [11] URBANIAK M, BARAN A, LEE S, et al. Utilization of PCB-contaminated Hudson River sediment by thermal processing and phytoremediation[J]. Science of the Total Environment,2020,738:139841. doi: 10.1016/j.scitotenv.2020.139841
    [12] LUO W G, LU J. Inhibition of in situ coating of sediment ceramsite on sediment nutrient release of eutrophic lakes[J]. Environmental Geochemistry and Health,2020:1-15.
    [13] AZCUE J M, ZEMAN A J, FRSTNER U. International review of application of subaqueous capping techniques for remediation of contaminated sediments[C]// Proceedings of the 3rd International Congress of Environmental Geotechnics. Publ Rotterdam: Balkema, 1998.
    [14] ZEMAN A J. Subaqueous capping of very soft contaminated sediments[J]. Canadian Geotechnical Journal,1994,31(4):570-577. doi: 10.1139/t94-066
    [15] HYÖTYLÄINEN T, KARELS A, OIKARI A. Assessment of bioavailability and effects of chemicals due to remediation actions with caging mussels (Anodonta anatina) at a creosote-contaminated lake sediment site[J]. Water Research,2002,36(18):4497-4504. doi: 10.1016/S0043-1354(02)00156-2
    [16] MAILMAN M, STEPNUK L, CICEK N, et al. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: a review[J]. Science of the Total Environment,2006,368(1):224-235. doi: 10.1016/j.scitotenv.2005.09.041
    [17] YIN H B, KONG M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap[J]. Journal of Environmental Management,2015,151:178-185.
    [18] 李国宏, 叶碧碧, 吴敬东, 等.底泥原位洗脱过程中氮磷含量与形态变化特征[J]. 环境科学研究,2020,33(2):392-401.

    LI G H, YE B B, WU J D, et al. Changing characteristics on contents and forms of nitrogen and phosphorus in sediment during in situ physical elution[J]. Research of Environmental Sciences,2020,33(2):392-401.
    [19] LIBRALATO G, MINETTO D, LOFRANO G, et al. Toxicity assessment within the application of in situ contaminated sediment remediation technologies: a review[J]. Science of the Total Environment,2018,621:85-94. doi: 10.1016/j.scitotenv.2017.11.229
    [20] LAMPERT D J, SARCHET W V, REIBLE D D. Assessing the effectiveness of thin-layer sand caps for contaminated sediment management through passive sampling[J]. Environmental Science & Technology,2011,45(19):8437-8443.
    [21] 周莹, 潘纲, 陈灏.土壤原位覆盖对底泥的修复作用研究[J]. 环境工程学报,2011,5(11):2459-2463.

    ZHOU Y, PAN G, CHEN H. Effect of in situ capping on contaminated sediment remediation using local soil[J]. Chinese Journal of Environmental Engineering,2011,5(11):2459-2463.
    [22] ZHANG X, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion[J]. Journal of Hazardous Materials,2015,284:253-260. doi: 10.1016/j.jhazmat.2014.11.030
    [23] LU S G, ZHANG X, XUE Y F. Application of calcium peroxide in water and soil treatment: a review[J]. Journal of Hazardous Materials,2017,337:163-177. doi: 10.1016/j.jhazmat.2017.04.064
    [24] WOLANOV Y, PRIKHODCHENKO P V, MEDVEDEV A G, et al. Zinc dioxide nanoparticulates: a hydrogen peroxide source at moderate pH[J]. Environmental Science & Technology,2013,47(15):8769-8774.
    [25] 孙远军. 城市河流底泥污染与原位稳定化研究[D]. 西安: 西安建筑科技大学, 2009.
    [26] HUANG G X, LIU F, YANG Y Z, et al. Removal of ammonium-nitrogen from groundwater using a fully passive permeable reactive barrier with oxygen-releasing compound and clinoptilolite[J]. Journal of Environmental Management,2015,154:1-7.
    [27] 张剑.过氧化钙法对黑臭河道污水处理的效果研究[J]. 吉林水利,2019(8):40-42. doi: 10.3969/j.issn.1009-2846.2019.08.013

    ZHANG J. Study on the effect of calcium peroxide method on sewage treatment in black odor river[J]. Jilin Water Resources,2019(8):40-42. doi: 10.3969/j.issn.1009-2846.2019.08.013
    [28] GOI A, VIISIMAA M, TRAPIDO M, et al. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides[J]. Chemosphere,2011,82(8):1196-1201. doi: 10.1016/j.chemosphere.2010.11.053
    [29] 王琳琳, 张智明, 丁阿强, 等.沸石材料的改性及其对水体污染物的吸附性能[J]. 化工进展,2018,37(6):2269-2281.

    WANG L L, ZHANG Z M, DING A Q, et al. Modification of zeolite materials and their adsorption properties for the pollutants in aqueous solution[J]. Chemical Industry and Engineering Progress,2018,37(6):2269-2281.
    [30] GONG X, LI Y, ZHANG Z, et al. Modified adsorption capacity to space molecular pollutant of zeolite via interface engineering with atomic layer deposition[J]. Journal of Harbin Institute of Technology(New Series),2020,27(3):217-224.
    [31] 杜蓉. 有机改性沸石的制备及其对PAEs吸附行为与机理的研究[D]. 重庆: 重庆大学, 2010.
    [32] BAKER H M, MASSADEH A M, YOUNES H A. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods[J]. Environmental Monitoring and Assessment,2009,157(1/2/3/4):319-330.
    [33] HAMIDPOUR M, KALBASI M, AFYUNI M, et al. Sorption hysteresis of Cd(Ⅱ) and Pb(Ⅱ) on natural zeolite and bentonite[J]. Journal of Hazardous Materials,2010,181(1/2/3):686-691.
    [34] MAHABADI A A, HAJABBASI M A, KHADEMI H, et al. Soil cadmium stabilization using an Iranian natural zeolite[J]. Geoderma,2007,137(3/4):388-393.
    [35] 王森. 沸石覆盖技术修复富营养化水体沉积物的试验研究[D]. 西安: 西安建筑科技大学, 2011.
    [36] ALBARANO L, LOFRANO G, COSTANTINI M, et al. Comparison of in situ sediment remediation amendments: risk perspectives from species sensitivity distribution[J]. Environmental Pollution,2021,272:115995. doi: 10.1016/j.envpol.2020.115995
    [37] 亢增军, 袁林江, 孔海霞.3种覆盖材料对底泥磷释放的抑制及影响因素研究[J]. 安全与环境学报,2014,14(3):202-205.

    KANG Z J, YUAN L J, KONG H X. Inhibiting effect of the three kinds of barriers on the release of sediment phosphorus and the influential factors[J]. Journal of Safety and Environment,2014,14(3):202-205.
    [38] LEE J, PARK J W. Numerical investigation for the isolation effect of in situ capping for heavy metals in contaminated sediments[J]. KSCE Journal of Civil Engineering,2013,17(6):1275-1283. doi: 10.1007/s12205-013-0218-z
    [39] ZHOU Z M, HUANG T L, YUAN B L. Nitrogen reduction using bioreactive thin-layer capping (BTC) with biozeolite: a field experiment in a eutrophic river[J]. Journal of Environmental Sciences,2016,42:119-125. doi: 10.1016/j.jes.2015.07.005
    [40] HUANG H M, XIAO X M, YAN B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent[J]. Journal of Hazardous Materials,2010,175(1/2/3):247-252.
    [41] XIANG W, ZHANG X Y, CHEN J J, et al. Biochar technology in wastewater treatment: a critical review[J]. Chemosphere,2020,252:126539. doi: 10.1016/j.chemosphere.2020.126539
    [42] GHOSH U, LUTHY R G, CORNELISSEN G, et al. In-situ sorbent amendments: a new direction in contaminated sediment management[J]. Environmental Science & Technology,2011,45(4):1163-1168.
    [43] ZHU Y Y, TANG W Z, JIN X, et al. Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes[J]. Science of the Total Environment,2019,646:93-104. doi: 10.1016/j.scitotenv.2018.07.277
    [44] 邹旭青, 郝庆菊, 赵茂森, 等.铁矿石和生物炭添加对潜流人工湿地污水处理效果及温室气体排放的影响[J]. 环境工程学报,2021,15(2):588-598. doi: 10.12030/j.cjee.202005025

    ZOU X Q, HAO Q J, ZHAO M S, et al. Effects of hematite and biochar addition on sewage treatment and greenhouse gases emissions in subsurface flow constructed wetland[J]. Chinese Journal of Environmental Engineering,2021,15(2):588-598. doi: 10.12030/j.cjee.202005025
    [45] 程帅龙, 林亲铁, 肖荣波, 等.铜基生物炭活化过硫酸钠处理废水中EDTA-Cu[J]. 环境工程学报,2020,14(12):3298-3307. doi: 10.12030/j.cjee.202001152

    CHENG S L, LIN Q T, XIAO R B, et al. Removal of EDTA-Cu in wastewater by copper-based biochar activated sodium persulfate[J]. Chinese Journal of Environmental Engineering,2020,14(12):3298-3307. doi: 10.12030/j.cjee.202001152
    [46] PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil,2011,348(1/2):439-451.
    [47] TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere,2015,125:70-85. doi: 10.1016/j.chemosphere.2014.12.058
    [48] 孟梅. 生物炭对重金属污染沉积物的钝化修复效应[D]. 武汉: 华中农业大学, 2016.
    [49] 李扬, 李锋民, 张修稳, 等.生物炭覆盖对底泥污染物释放的影响[J]. 环境科学,2013,34(8):3071-3078.

    LI Y, LI F M, ZHANG X W, et al. Effects of biochar covering on the release of pollutants from sediment[J]. Environmental Science,2013,34(8):3071-3078.
    [50] 姜时欣. 生物炭对水体及其沉积物中Cr(Ⅵ)的吸附效果研究[D]. 邯郸: 河北工程大学, 2020.
    [51] ODENCRANTZ J E, JOHNSON J G, KOENIGSBERG S S. Enhanced intrinsic bioremediation of hydrocarbons using an oxygen-releasing compound[J]. Remediation Journal,1996,6(4):99-114. doi: 10.1002/rem.3440060408
    [52] 夏德春, 郑翔, 吕树光, 等.过氧化钙缓释材料对河道水固磷及底泥控磷的机理研究[J]. 环境污染与防治,2020,42(5):553-557.

    XIA D C, ZHENG X, LYU S G, et al. Slow-release CaO2 and its mechanisms on adsorption of phosphorus in river water and control of phosphorus in sediment[J]. Environmental Pollution & Control,2020,42(5):553-557.
    [53] 王妙, 张华俊, 陈海峰, 等.沸石联合过氧化钙对黑臭河道底泥营养盐释放的作用研究[J]. 广东化工,2017,44(4):36-37. doi: 10.3969/j.issn.1007-1865.2017.04.014

    WANG M, ZHANG H J, CHEN H F, et al. The control of zeolite combined with calcium peroxide on nutrients release from sediment in malodorous rivers[J]. Guangdong Chemical Industry,2017,44(4):36-37. doi: 10.3969/j.issn.1007-1865.2017.04.014
    [54] LEE C S, le THANH T, KIM E J, et al. Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater[J]. Bioresource Technology,2014,171:59-65. doi: 10.1016/j.biortech.2014.08.039
    [55] KAO C M, CHEN S C, WANG J Y, et al. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies[J]. Water Research,2003,37(1):27-38. doi: 10.1016/S0043-1354(02)00254-3
    [56] WU C H, CHANG S H, LIN C W. Improvement of oxygen release from calcium peroxide-polyvinyl alcohol beads by adding low-cost bamboo biochar and its application in bioremediation[J]. CLEAN - Soil, Air, Water,2015,43(2):287-295. doi: 10.1002/clen.201400059
    [57] HANELA S, DURÁN J, JACOBO S. Removal of iron-cyanide complexes from wastewaters by combined UV-ozone and modified zeolite treatment[J]. Journal of Environmental Chemical Engineering,2015,3(3):1794-1801. doi: 10.1016/j.jece.2015.06.023
    [58] KIANFAR E. Zeolites: properties, applications, modification and selectivity[M/OL]. (2020-04-01)[2021-05-20]. https://www.researchgate.net/publication/337928117_Zeolites_Properties_Applications_Modification_and_Selectivity.
    [59] GUESH K, MÁRQUEZ-ÁLVAREZ C, CHEBUDE Y, et al. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y[J]. Applied Surface Science,2016,378:473-478. doi: 10.1016/j.apsusc.2016.04.029
    [60] 谢苏峰, 浦燕新, 廖书林.镧改性沸石覆盖控制河道底泥污染物释放实验研究[J]. 山西化工,2020,40(4):19-21.

    XIE S F, PU Y X, LIAO S L. Experimental study on controlling pollutant release from river sediment by covering with lanthanum modified zeolite[J]. Shanxi Chemical Industry,2020,40(4):19-21.
    [61] XU Y H, NAKAJIMA T, OHKI A. Adsorption and removal of arsenic(Ⅴ) from drinking water by aluminum-loaded Shirasu-zeolite[J]. Journal of Hazardous Materials,2002,92(3):275-287. doi: 10.1016/S0304-3894(02)00020-1
    [62] CAKICIOGLU-OZKAN F, ULKU S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite[J]. Microporous and Mesoporous Materials,2005,77(1):47-53. doi: 10.1016/j.micromeso.2004.08.013
    [63] OGURA M, SHINOMIYA S Y, TATENO J, et al. Alkali-treatment technique:new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Applied Catalysis A:General,2001,219(1/2):33-43.
    [64] 何钰莹, 杨舸, 张丹一, 等.沸石的优化改性及其对水中氨氮去除性能[J]. 净水技术,2019,38(4):59-64.

    HE Y Y, YANG G, ZHANG D Y, et al. Optimized modification of zeolite for ammonia-nitrogen removal from aqueous solution[J]. Water Purification Technology,2019,38(4):59-64.
    [65] 王代芝, 刘娟敏.酸碱改性沸石处理低浓度含Cd2+废水的研究[J]. 中国非金属矿工业导刊,2015(2):16-18. doi: 10.3969/j.issn.1007-9386.2015.02.005

    WANG D Z, LIU J M. Study on the treatment of cadmium wastewater by acid-basea modified zeolite[J]. China Non-Metallic Minerals Industry,2015(2):16-18. doi: 10.3969/j.issn.1007-9386.2015.02.005
    [66] 刘婷, 赵钰颖, 林建伟, 等.锆、镧和镧锆改性沸石添加控制底泥磷释放的对比[J]. 环境科学,2019,40(12):5411-5420.

    LIU T, ZHAO Y Y, LIN J W, et al. Comparison of the control of sedimentary phosphorus release using zirconium-, lanthanum-, and lanthanum/zirconium-modified zeolites as sediment amendments[J]. Environmental Science,2019,40(12):5411-5420.
    [67] FAGHIHIAN H, BOWMAN R S. Adsorption of chromate by clinoptilolite exchanged with various metal cations[J]. Water Research,2005,39(6):1099-1104. doi: 10.1016/j.watres.2004.12.010
    [68] 汲雨, 奚秀清, 詹艳慧, 等.磁性铁锆改性沸石覆盖对河道底泥磷释放的控制效果[J]. 上海海洋大学学报,2019,28(2):267-276.

    JI Y, XI X Q, ZHAN Y H, et al. Efficiency of sediment capping with magnetic iron/zirconium-modified zeolites to control phosphorus release from sediments[J]. Journal of Shanghai Ocean University,2019,28(2):267-276.
    [69] TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: a review[J]. Bioresource Technology,2016,212:318-333. doi: 10.1016/j.biortech.2016.04.093
    [70] PENG P, LANG Y H, WANG X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms[J]. Ecological Engineering,2016,90:225-233. doi: 10.1016/j.ecoleng.2016.01.039
    [71] MAHDI Z, EL HANANDEH A, YU Q J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering,2019,7(5):103379. doi: 10.1016/j.jece.2019.103379
    [72] 陈佼, 张建强, 陆一新, 等.改性猪粪生物炭对水中Cr(Ⅵ)的吸附性能[J]. 水处理技术,2017,43(4):31-35.

    CHEN J, ZHANG J Q, LU Y X, et al. Adsorption properties of Cr(Ⅵ) in aquatic solutions by modified pig manure biochar[J]. Technology of Water Treatment,2017,43(4):31-35.
    [73] TSUDA Y, TAHIRA M, SHINOHARA N, et al. Effect of photoacid generator on surface wettability controllable polyimides by UV light irradiation[J]. Journal of Photopolymer Science and Technology,2015,28(3):313-318. doi: 10.2494/photopolymer.28.313
    [74] 李桥, 雍毅, 丁文川, 等.紫外辐照改性生物炭对VOCs的动态吸附[J]. 环境科学,2016,37(6):2065-2072.

    LI Q, YONG Y, DING W C, et al. Studies of dynamic adsorption behavior of VOCs on biochar modified by ultraviolet irradiation[J]. Environmental Science,2016,37(6):2065-2072.
    [75] 徐大勇, 张苗, 杨伟伟, 等.氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展,2020,39(3):1153-1166.

    XU D Y, ZHANG M, YANG W W, et al. Preparation of alumina modified sludge biocharcoal particles and their adsorption characteristics for Pb(Ⅱ)[J]. Chemical Industry and Engineering Progress,2020,39(3):1153-1166.
    [76] 曹璟, 王鹏飞, 陈俊伊, 等.改性生物炭材料原位修复污染底泥的效果[J]. 环境工程技术学报,2020,10(4):661-670. doi: 10.12153/j.issn.1674-991X.20200021

    CAO J, WANG P F, CHEN J Y, et al. Study on the effect of modified biochar materials on in situ remediation of contaminated sediments[J]. Journal of Environmental Engineering Technology,2020,10(4):661-670. ◇ doi: 10.12153/j.issn.1674-991X.20200021
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  364
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01

目录

    /

    返回文章
    返回