留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤改良剂改良酸化土壤的研究进展

刘娇娴 崔骏 刘洪宝 潘琦 何小松

刘娇娴,崔骏,刘洪宝,等.土壤改良剂改良酸化土壤的研究进展[J].环境工程技术学报,2022,12(1):173-184 doi: 10.12153/j.issn.1674-991X.20210119
引用本文: 刘娇娴,崔骏,刘洪宝,等.土壤改良剂改良酸化土壤的研究进展[J].环境工程技术学报,2022,12(1):173-184 doi: 10.12153/j.issn.1674-991X.20210119
LIU J X,CUI J,LIU H B,et al.Research progress of soil amelioration of acidified soil by soil amendments[J].Journal of Environmental Engineering Technology,2022,12(1):173-184 doi: 10.12153/j.issn.1674-991X.20210119
Citation: LIU J X,CUI J,LIU H B,et al.Research progress of soil amelioration of acidified soil by soil amendments[J].Journal of Environmental Engineering Technology,2022,12(1):173-184 doi: 10.12153/j.issn.1674-991X.20210119

土壤改良剂改良酸化土壤的研究进展

doi: 10.12153/j.issn.1674-991X.20210119
基金项目: 国家重点研发计划项目(2019YFD1101300)
详细信息
    作者简介:

    刘娇娴(1997—),女,硕士研究生,研究方向为土壤修复,860942228@qq.com

    通讯作者:

    何小松(1982—),男,研究员,博士,主要从事土壤修复和固体废物处理处置技术研究, hexs82@126.com

  • 中图分类号: X53

Research progress of soil amelioration of acidified soil by soil amendments

  • 摘要: 推进酸化土壤改良,提高农业生产力是实现作物提质增收和发展绿色农业的重要任务。土壤改良剂具有降低土壤酸度、增加土壤养分、优化土壤结构、提高微生物活性、改善土壤微环境等作用,在修复酸化土壤方面具有重要意义。基于上述背景,从离子迁移转化角度阐明土壤酸化成因,总结酸性改良剂分类、作用机理、改良效果及其对作物长势的影响;指明现有改良剂在酸化土壤改良方面存在的问题,提出新型土壤改良剂研发方向以及在应用过程中的关键影响因素;最后对改良剂未来发展趋势进行展望,以期为土壤改良剂的研发和制备提供借鉴。

     

  • 图  1  土壤酸化成因[20-21]

    Figure  1.  Causes of soil acidification

    图  2  土壤改良剂改善土壤酸环境机理

    Figure  2.  Mechanism of soil amendments to improve soil acid environment

    图  3  土壤改良剂改善养分机理

    Figure  3.  Mechanism of soil amendments to improve nutrients

    图  4  土壤团聚体团聚方式[85]

    注:1为微、小团聚体团聚方式;2为大团聚体团聚方式。

    Figure  4.  Mode of soil aggregate formation

    表  1  常见酸性改良剂的优缺点[9]

    Table  1.   Advantages and disadvantages of common acidification amendments

    改良剂 物质组成 优点 缺点
    石灰类 石灰石、生石灰、
    熟石灰、白云石等
    酸度改良见效快、效果好;
    增加土壤钙、镁浓度
    亚表层酸度改良不佳;易造成土壤板结;
    用量大,运输成本高
    矿物和工业副产品 硅酸钙粉、磷石膏、
    碱渣、粉煤灰等
    酸度改良效果好;提供土壤无机养分 易导致重金属风险;有机质含量低
    有机物料 秸秆、腐熟粪便、
    堆肥产品等
    增加土壤有机质、微生物和酶活性;
    改善土壤物理性质
    排放温室气体;养分淋溶流失;需与化肥配施;需多次施用
    生物质炭 生物炭、改性生物炭 无机养分较多;增加微生物和酶活性;固碳 排放温室气体;养分淋溶流失;有机质含量低;
    团聚性改善效果不佳;成本高;长期研究不足
    下载: 导出CSV

    表  2  微生物测试指标[91]

    Table  2.   Microbiological test indicators

    微生物/酶 测试指标
    微生物 群落结构、丰富性和多样性、
    总生物量、生物量
    酶(碳循环) β-D-纤维二糖苷酶、β-葡萄糖苷酶、β-木糖苷酶、
    α-葡萄糖苷酶、转化酶、蔗糖酶、水解酶
    酶(氮循环) 脲酶、亮氨酸氨基肽酶、蛋白酶
    酶(硫循环) 硫酸酯酶、芳基硫酸酯酶
    酶(磷循环) 磷酸单酯酶、碱性/酸性磷酸酶
    酶(碳和氮循环) N-乙酰基-β-氨基葡萄糖苷酶
    酶(氧化酶) 过氧物酶、酚氧化酶、脱氢酶、过氧化氢酶

    (真菌活性)
    几丁质酶
    下载: 导出CSV
  • [1] 赵其国, 黄国勤, 马艳芹.中国南方红壤生态系统面临的问题及对策[J]. 生态学报,2013,33(24):7615-7622.

    ZHAO Q G, HUANG G Q, MA Y Q. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica,2013,33(24):7615-7622.
    [2] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science,2010,327:1008-1010. doi: 10.1126/science.1182570
    [3] LU X K, MAO Q G, MO J M, et al. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history[J]. Environmental Science & Technology,2015,49(7):4072-4080.
    [4] 国务院关于印发国家环境保护“十一五”规划的通知: 国发〔2007〕37号[A/OL]. (2007-11-26)[2021-02-05]. http://www.gov.cn/zwgk/2007-11/26/content_815498.htm.
    [5] ROWELL D L. Chemistry of variable charge soils[J]. European Journal of Soil Science,2000,51(3):541-549.
    [6] 虞璐. 生物质炭对酸化土壤的改良效应及其对土壤硝化作用的影响[D]. 杭州: 浙江大学, 2019.
    [7] LIU W J, LI W W, JIANG H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews,2017,117(9):6367-6398. doi: 10.1021/acs.chemrev.6b00647
    [8] 徐胜涛. 土壤改良剂对马铃薯生长和土壤质量的作用机制[D]. 呼和浩特: 内蒙古农业大学, 2015.
    [9] 戴中民. 生物炭对酸化土壤的改良效应与生物化学机理研究[D]. 杭州: 浙江大学, 2017.
    [10] BOWMAN W D, CLEVELAND C C, HALADA Ĺ, et al. Negative impact of nitrogen deposition on soil buffering capacity[J]. Nature Geoscience,2008,1(11):767-770. doi: 10.1038/ngeo339
    [11] DUAN L, HUANG Y M, HAO J M, et al. Vegetation uptake of nitrogen and base cations in China and its role in soil acidification[J]. Science of the Total Environment,2004,330(1/2/3):187-198.
    [12] DRISCOLL C T, DRISCOLL K M, MITCHELL M J, et al. Effects of acidic deposition on forest and aquatic ecosystems in New York State[J]. Environmental Pollution,2003,123(3):327-336. doi: 10.1016/S0269-7491(03)00019-8
    [13] 高雪峰, 贾渊.荒漠草原植物根分泌物中有机酸组分分析及其生态效应研究[J]. 生态环境学报,2020,29(10):1927-1934.

    GAO X F, JIA Y. Analysis of organic acid components in root exudates and their ecological effects of the plants in desert steppe of Inner Mongolia[J]. Ecology and Environmental Sciences,2020,29(10):1927-1934.
    [14] HUBOVA P, TEJNECKY V, ASH C, et al. Low-molecular-mass organic acids in the forest soil environment[J]. Mini-Reviews in Organic Chemistry,2017,14(1):75-84. doi: 10.2174/1570193X14666161130163034
    [15] YUAN Z Y, CHEN H Y. A global analysis of fine root production as affected by soil nitrogen and phosphorus[J]. Proceedings Biological Sciences,2012,279:3796-3802.
    [16] MENG C F, LU X N, CAO Z H, et al. Long-term effects of lime application on soil acidity and crop yields on a red soil in Central Zhejiang[J]. Plant and Soil,2004,265(1/2):101-109.
    [17] CAI J P, LUO W T, LIU H Y, et al. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland[J]. Atmospheric Environment,2017,170:312-318. doi: 10.1016/j.atmosenv.2017.09.054
    [18] ZHU Q C, de VRIES W, LIU X J, et al. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980-2010[J]. Science of the Total Environment,2018,618:1497-1505. (in Chinese) doi: 10.1016/j.scitotenv.2017.09.289
    [19] FINKEL O M, CASTRILLO G, HERRERA PAREDES S, et al. Understanding and exploiting plant beneficial microbes[J]. Current Opinion in Plant Biology,2017,38:155-163. doi: 10.1016/j.pbi.2017.04.018
    [20] YU Z P, CHEN H Y H, SEARLE E B, et al. Whole soil acidification and base cation reduction across subtropical China[J]. Geoderma,2020,361:114107. doi: 10.1016/j.geoderma.2019.114107
    [21] 曾沐梵. 长期施肥导致农田土壤酸化的机制及缓解策略[D]. 北京: 中国农业大学, 2017.
    [22] 李赟, 刘迪, 范如芹, 等.土壤改良剂的研究进展[J]. 江苏农业科学,2020,48(10):63-69.

    LI Y, LIU D, FAN R Q, et al. Research progress of soil ameliorants[J]. Jiangsu Agricultural Sciences,2020,48(10):63-69.
    [23] 矫威. 不同改良剂对作物生长发育及酸性土壤理化性状的影响[D]. 武汉: 华中农业大学, 2014.
    [24] 洪灿. 土壤改良剂对酸性土壤磷的生物有效性和土壤物理性质的影响[D]. 杭州: 浙江大学, 2018.
    [25] 郭浩, 彭昌盛, 寇长江, 等.污泥堆肥对针茅和车前草生长的影响[J]. 环境工程技术学报,2015,5(2):136-142.

    GUO H, PENG C S, KOU C J, et al. Influence of sewage sludge compost on the growth of plant Stipa capillata Linn. and Plantago asiatica Linn[J]. Journal of Environmental Engineering Technology,2015,5(2):136-142.
    [26] MASUD M M, BAQUY M A A, AKHTER S, et al. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth[J]. Ecotoxicology and Environmental Safety,2020,202:110865. doi: 10.1016/j.ecoenv.2020.110865
    [27] BOSSOLANI J W, CRUSCIOL C A C, LEITE M F A, et al. Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation system[J]. Soil Biology and Biochemistry,2021,156:108188. doi: 10.1016/j.soilbio.2021.108188
    [28] MARKAKIS E A, FOUNTOULAKIS M S, DASKALAKIS G C, et al. The suppressive effect of compost amendments on Fusarium oxysporum f.sp. radicis-cucumerinum in cucumber and Verticillium dahliae in eggplant[J]. Crop Protection,2016,79:70-79. doi: 10.1016/j.cropro.2015.10.015
    [29] 罗飞, 宋静, 董敏刚, 等.菜籽饼生物炭中污染物赋存特征及其用于土壤改良的适宜性评价[J]. 环境科学研究,2014,27(11):1292-1297.

    LUO F, SONG J, DONG M G, et al. Characterization of contaminants in rapeseed cake-derived biochars and evaluation of their suitability for soil improvement[J]. Research of Environmental Sciences,2014,27(11):1292-1297.
    [30] 彭成法, 肖汀璇, 李志建.热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究,2017,30(10):1637-1644.

    PENG C F, XIAO T X, LI Z J. Effects of pyrolysis temperature on structural properties of sludge-based biochar and its adsorption for heavy metals[J]. Research of Environmental Sciences,2017,30(10):1637-1644.
    [31] HUANG L M, YU G W, ZOU F Z, et al. Shift of soil bacterial community and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil by inorganic-organic mixed amendments: a field study[J]. Applied Soil Ecology,2018,130:104-119. doi: 10.1016/j.apsoil.2018.05.014
    [32] BROWN T T, KOENIG R T, HUGGINS D R, et al. Lime effects on soil acidity, crop yield, and aluminum chemistry in direct-seeded cropping systems[J]. Soil Science Society of America Journal,2008,72(3):634-640. doi: 10.2136/sssaj2007.0061
    [33] LI X W, LI Y L, QU M, et al. Cell wall pectin and its methyl-esterification in transition zone determine Al resistance in cultivars of pea (Pisum sativum)[J]. Frontiers in Plant Science,2016,7:39.
    [34] LUPWAYI N Z, BENKE M B, HAO X Y, et al. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure[J]. Agronomy Journal,2014,106(2):612-621. doi: 10.2134/agronj2013.0427
    [35] WAN W J, TAN J D, WANG Y, et al. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function[J]. Science of the Total Environment,2020,700:134418. doi: 10.1016/j.scitotenv.2019.134418
    [36] YAMAMOTO Y. Aluminum toxicity in plant cells: mechanisms of cell death and inhibition of cell elongation[J]. Soil Science and Plant Nutrition,2019,65(1):41-55. doi: 10.1080/00380768.2018.1553484
    [37] HOLLAND J E, BENNETT A E, NEWTON A C, et al. Liming impacts on soils, crops and biodiversity in the UK: a review[J]. Science of the Total Environment,2018,610/611:316-332. doi: 10.1016/j.scitotenv.2017.08.020
    [38] DELHAIZE E, RYAN P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology,1995,107(2):315-321. doi: 10.1104/pp.107.2.315
    [39] QIAN L B, CHEN B L, HU D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar[J]. Environmental Science & Technology,2013,47(6):2737-2745.
    [40] 王梅. 钙-蒙脱石和石灰对两种酸性土壤的改良研究[D]. 重庆: 西南大学, 2018.
    [41] BUTTERLY C R, BALDOCK J A, TANG C. The contribution of crop residues to changes in soil pH under field conditions[J]. Plant and Soil,2013,366(1/2):185-198.
    [42] ELISA A A, NINOMIYA S, SHAMSHUDDIN J, et al. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application[J]. Solid Earth,2016,7(2):367-374. doi: 10.5194/se-7-367-2016
    [43] WONG M T F, NORTCLIFF S, SWIFT R S. Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure, and peat applied to tropical soils[J]. Communications in Soil Science and Plant Analysis,1998,29(19/20):2927-2937.
    [44] ZHAO W R, LI J Y, JIANG J, et al. The mechanisms underlying the reduction in aluminum toxicity and improvements in the yield of sweet potato (Ipomoea batatas L. ) after organic and inorganic amendment of an acidic ultisol[J]. Agriculture, Ecosystems & Environment,2020,288:106716.
    [45] RABOIN L M, RAZAFIMAHAFALY A H D, RABENJARISOA M B, et al. Improving the fertility of tropical acid soils: liming versus biochar application:a long term comparison in the Highlands of Madagascar[J]. Field Crops Research,2016,199:99-108. doi: 10.1016/j.fcr.2016.09.005
    [46] SHI R Y, LI J Y, XU R K, et al. Ameliorating effects of individual and combined application of biomass ash, bone meal and alkaline slag on acid soils[J]. Soil and Tillage Research,2016,162:41-45. doi: 10.1016/j.still.2016.04.017
    [47] CARMEIS FILHO A C A, PENN C J, CRUSCIOL C A C, et al. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions[J]. Agriculture, Ecosystems & Environment,2017,241:11-23.
    [48] ILLERA V, GARRIDO F, VIZCAYNO C, et al. Field application of industrial by-products as Al toxicity amendments: chemical and mineralogical implications[J]. European Journal of Soil Science,2004,55(4):681-692. doi: 10.1111/j.1365-2389.2004.00640.x
    [49] DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification:a critical review[J]. Science of the Total Environment,2017,581/582:601-611. doi: 10.1016/j.scitotenv.2016.12.169
    [50] MAHMOOD F, KHAN I, ASHRAF U, et al. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties[J]. Journal of Soil Science and Plant Nutrition,2017,17(1):22-32.
    [51] CRUSCIOL C A C, ARTIGIANI A C C A, ARF O, et al. Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system[J]. CATENA,2016,137:87-99. doi: 10.1016/j.catena.2015.09.009
    [52] SIEDT M, SCHÄFFER A, SMITH K E C, et al. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides[J]. Science of the Total Environment,2021,751:141607. doi: 10.1016/j.scitotenv.2020.141607
    [53] 晏晓丹. 矿物质土壤调理剂对氮磷的固持影响及其机理研究[D]. 广州: 华南理工大学, 2018.
    [54] EL-NAGAR D A, SARY D H. Synthesis and characterization of nano bentonite and its effect on some properties of sandy soils[J]. Soil and Tillage Research,2021,208:104872. doi: 10.1016/j.still.2020.104872
    [55] PLAIMART J, ACHARYA K, MROZIK W, et al. Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application[J]. Environmental Pollution,2021,268:115684. doi: 10.1016/j.envpol.2020.115684
    [56] BORCHARD N, SCHIRRMANN M, CAYUELA M L, et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis[J]. Science of the Total Environment,2019,651:2354-2364. doi: 10.1016/j.scitotenv.2018.10.060
    [57] CHEN J H, SUN X, ZHENG J F, et al. Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil[J]. Biology and Fertility of Soils,2018,54(2):175-188. doi: 10.1007/s00374-017-1253-6
    [58] PANDIT N R, MULDER J, HALE S E, et al. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil[J]. Science of the Total Environment,2018,625:1380-1389. doi: 10.1016/j.scitotenv.2018.01.022
    [59] YANG Y, LIU B M, NI X Y, et al. Rice productivity and profitability with slow-release urea containing organic-inorganic matrix materials[J]. Pedosphere,2021,31(4):511-520. doi: 10.1016/S1002-0160(21)60001-2
    [60] REN F L, SUN N, XU M, et al. Changes in soil microbial biomass with manure application in cropping systems: a meta-analysis[J]. Soil and Tillage Research,2019,194:104291. doi: 10.1016/j.still.2019.06.008
    [61] ZHAO J, NI T, LI J, et al. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system[J]. Applied Soil Ecology,2016,99:1-12. doi: 10.1016/j.apsoil.2015.11.006
    [62] HOU Q, ZUO T, WANG J, et al. Responses of nitrification and bacterial community in three size aggregates of paddy soil to both of initial fertility and biochar addition[J]. Applied Soil Ecology,2021,166:104004. doi: 10.1016/j.apsoil.2021.104004
    [63] AFKAIRIN A, IPPOLITO J A, STROMBERGER M, et al. Solubilization of organic phosphorus sources by cyanobacteria and a commercially available bacterial consortium[J]. Applied Soil Ecology,2021,162:103900. doi: 10.1016/j.apsoil.2021.103900
    [64] HE L L, SHAN J, ZHAO X, et al. Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition[J]. Chemosphere,2019,234:558-567. doi: 10.1016/j.chemosphere.2019.06.038
    [65] XU G, ZHANG Y, SUN J N, et al. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil[J]. Science of the Total Environment,2016,568:910-915. doi: 10.1016/j.scitotenv.2016.06.079
    [66] 张猛. 干湿交替过程中土壤容重、水分特征曲线和热特性的动态变化特征[D]. 北京: 中国农业大学, 2017.
    [67] 陈丹平. 第四纪红土发育红壤孔隙的数量特征、控制因子和重构[D]. 杭州: 浙江大学, 2014.
    [68] YANG Y H, WU J C, ZHAO S W, et al. Assessment of the responses of soil pore properties to combined soil structure amendments using X-ray computed tomography[J]. Scientific Reports,2018,8:695. doi: 10.1038/s41598-017-18997-1
    [69] HARDIE M, CLOTHIER B, BOUND S, et al. Does biochar influence soil physical properties and soil water availability[J]. Plant and Soil,2014,376(1/2):347-361.
    [70] GŁĄB T, PALMOWSKA J, ZALESKI T, et al. Effect of biochar application on soil hydrological properties and physical quality of sandy soil[J]. Geoderma,2016,281:11-20. doi: 10.1016/j.geoderma.2016.06.028
    [71] ZHAO Y D, HU X, LI X Y. Analysis of the intra-aggregate pore structures in three soil types using X-ray computed tomography[J]. CATENA,2020,193:104622. doi: 10.1016/j.catena.2020.104622
    [72] 刘晓利, 何园球, 李成亮, 等.不同利用方式旱地红壤水稳性团聚体及其碳、氮、磷分布特征[J]. 土壤学报,2009,46(2):255-262. doi: 10.3321/j.issn:0564-3929.2009.02.010

    LIU X L, HE Y Q, LI C L, et al. Distribution of soil water-stable aggregates and soil organic C, N and P in upland red soil[J]. Acta Pedologica Sinica,2009,46(2):255-262. doi: 10.3321/j.issn:0564-3929.2009.02.010
    [73] YIN Y, WANG L, LIANG C H, et al. Soil aggregate stability and iron and aluminium oxide contents under different fertiliser treatments in a long-term solar greenhouse experiment[J]. Pedosphere,2016,26(5):760-767. doi: 10.1016/S1002-0160(15)60086-8
    [74] YU H Y, DING W X, LUO J F, et al. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil[J]. Soil and Tillage Research,2012,124:170-177. doi: 10.1016/j.still.2012.06.011
    [75] DU Z L, ZHAO J K, WANG Y D, et al. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system[J]. Journal of Soils and Sediments,2017,17(3):581-589. doi: 10.1007/s11368-015-1349-2
    [76] ZHENG H, WANG X, LUO X X, et al. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation[J]. Science of the Total Environment,2018,610/611:951-960. doi: 10.1016/j.scitotenv.2017.08.166
    [77] PANG J Y, RYAN M H, SIDDIQUE K H M, et al. Unwrapping the rhizosheath[J]. Plant and Soil,2017,418(1):129-139.
    [78] ALGAYER B, le BISSONNAIS Y, DARBOUX F. Short-term dynamics of soil aggregate stability in the field[J]. Soil Science Society of America Journal,2014,78(4):1168-1176. doi: 10.2136/sssaj2014.01.0009
    [79] 徐爽, 王益权, 王浩, 等.不同肥力水平土壤团聚体的稳定性及对氮肥盐溶液的响应[J]. 植物营养与肥料学报,2012,18(5):1135-1143.

    XU S, WANG Y Q, WANG H, et al. Effects of nitrogen fertilizer solution on stability of soil aggregates under different fertility levels[J]. Plant Nutrition and Fertilizer Science,2012,18(5):1135-1143.
    [80] HE Y B, XU C, GU F, et al. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization[J]. Soil and Tillage Research,2018,184:281-290. doi: 10.1016/j.still.2018.08.008
    [81] RAHMAN M T, GUO Z C, ZHANG Z B, et al. Wetting and drying cycles improving aggregation and associated C stabilization differently after straw or biochar incorporated into a Vertisol[J]. Soil and Tillage Research,2018,175:28-36. doi: 10.1016/j.still.2017.08.007
    [82] ALBALASMEH A A, HAMDAN E H, GHARAIBEH M A, et al. Improving aggregate stability and hydraulic properties of Sandy loam soil by applying polyacrylamide polymer[J]. Soil and Tillage Research,2021,206:104821. doi: 10.1016/j.still.2020.104821
    [83] ZHANG S, CUI J W, WU H, et al. Organic carbon, total nitrogen, and microbial community distributions within aggregates of calcareous soil treated with biochar[J]. Agriculture, Ecosystems & Environment,2021,314:107408.
    [84] 赵冬. 黄土丘陵区植被恢复过程土壤团聚体结构演变特征及其量化表征[D]. 西安: 中国科学院教育部水土保持与生态环境研究中心, 2017.
    [85] 尚莉莉. 长期定位施肥与土地利用方式对红壤团聚体稳定性的影响[D]. 武汉: 华中农业大学, 2014.
    [86] AL-KAYSSI A W, AL-KARAGHOULI A A, HASSON A M, et al. Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions[J]. Journal of Agricultural Engineering Research,1990,45:241-252. doi: 10.1016/S0021-8634(05)80152-0
    [87] OBIA A, CORNELISSEN G, MARTINSEN V, et al. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol[J]. Soil and Tillage Research,2020,197:104521. doi: 10.1016/j.still.2019.104521
    [88] ZHANG Q Z, WANG Y D, WU Y F, et al. Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature[J]. Soil Science Society of America Journal,2013,77(5):1478-1487. doi: 10.2136/sssaj2012.0180
    [89] OGUNTUNDE P G, ABIODUN B J, AJAYI A E, et al. Effects of charcoal production on soil physical properties in Ghana[J]. Journal of Plant Nutrition and Soil Science,2008,171(4):591-596. doi: 10.1002/jpln.200625185
    [90] GENESIO L, MIGLIETTA F, LUGATO E, et al. Surface albedo following biochar application in durum wheat[J]. Environmental Research Letters,2012,7(1):014025. doi: 10.1088/1748-9326/7/1/014025
    [91] HE M J, XIONG X N, WANG L, et al. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils[J]. Journal of Hazardous Materials,2021,414:125378. doi: 10.1016/j.jhazmat.2021.125378
    [92] HE L L, ZHAO J, YANG S M, et al. Successive biochar amendment improves soil productivity and aggregate microstructure of a red soil in a five-year wheat-millet rotation pot trial[J]. Geoderma,2020,376:114570. doi: 10.1016/j.geoderma.2020.114570
    [93] ELBL J, MAKOVÁ J, JAVOREKOVÁ S, et al. Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality[J]. Agronomy,2019,9(9):485. doi: 10.3390/agronomy9090485
    [94] TUBEILEH A M, STEPHENSON G T. Soil amendment by composted plant wastes reduces the Verticillium dahliae abundance and changes soil chemical properties in a bell pepper cropping system[J]. Current Plant Biology,2020,22:100148. doi: 10.1016/j.cpb.2020.100148
    [95] RONG Q L, LI R N, HUANG S W, et al. Soil microbial characteristics and yield response to partial substitution of chemical fertilizer with organic amendments in greenhouse vegetable production[J]. Journal of Integrative Agriculture,2018,17(6):1432-1444. doi: 10.1016/S2095-3119(18)61946-X
    [96] LUO G W, SUN B, LI L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD- and phoC-harboring functional microbial populations[J]. Soil Biology and Biochemistry,2019,139:107632. doi: 10.1016/j.soilbio.2019.107632
    [97] WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology,2017,111:65-72. doi: 10.1016/j.apsoil.2016.11.015
    [98] KHAN M I, GWON H S, ALAM M A, et al. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system[J]. Applied Soil Ecology,2020,147:103400. doi: 10.1016/j.apsoil.2019.103400
    [99] LI S N, JI X H, CHAO C, et al. Effects of increasing lime application rates on microbial diversity and community structure in paddy soils[J]. Applied Soil Ecology,2021,161:103837. doi: 10.1016/j.apsoil.2020.103837
    [100] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment,2016,571:206-217. doi: 10.1016/j.scitotenv.2016.07.135
    [101] LIN Y X, YE G P, LIU D Y, et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol[J]. Soil Biology and Biochemistry,2018,123:218-228. doi: 10.1016/j.soilbio.2018.05.018
    [102] 李兆林, 赵敏, 王建国, 等.施用生石灰对土壤酶活性及大豆产量的影响[J]. 农业系统科学与综合研究,2008,24(4):480-484.

    LI Z L, ZHAO M, WANG J G, et al. Effect of quicklime application on soil enzymes activity and soybean yield[J]. System Sciences and Comprehensive Studies in Agriculture,2008,24(4):480-484.
    [103] 于翔宇. 施用石灰与生物炭对酸性土壤竹豆生长及养分吸收的影响[D]. 重庆: 西南大学, 2018.
    [104] VIDAL A, LENHART T, DIGNAC M F, et al. Promoting plant growth and carbon transfer to soil with organic amendments produced with mineral additives[J]. Geoderma,2020,374:114454. doi: 10.1016/j.geoderma.2020.114454
    [105] FONTE S J, BOTERO C, QUINTERO D C, et al. Earthworms regulate plant productivity and the efficacy of soil fertility amendments in acid soils of the Colombian Llanos[J]. Soil Biology and Biochemistry,2019,129:136-143. doi: 10.1016/j.soilbio.2018.11.016
    [106] LI Z G, SCHNEIDER R L, MORREALE S J, et al. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China[J]. Geoderma,2018,310:143-152. doi: 10.1016/j.geoderma.2017.09.009
    [107] BHARTI A, PRASANNA R, KUMAR G, et al. Cyanobacterial amendment boosts plant growth and flower quality in Chrysanthemum through improved nutrient availability[J]. Applied Soil Ecology,2021,162:103899. doi: 10.1016/j.apsoil.2021.103899
    [108] LIANG B W, MA C Q, FAN L M, et al. Soil amendment alters soil physicochemical properties and bacterial community structure of a replanted apple orchard[J]. Microbiological Research,2018,216:1-11. doi: 10.1016/j.micres.2018.07.010
    [109] 陈士更. 腐植酸土壤调理剂研制及其在酸化果园土壤上的应用[D]. 泰安: 山东农业大学, 2019.
    [110] QIU M H, ZHANG R F, XUE C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils,2012,48(7):807-816. doi: 10.1007/s00374-012-0675-4
    [111] CHEN S, QI G F, MA G Q, et al. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community[J]. Microbiological Research,2020,231:126373. doi: 10.1016/j.micres.2019.126373
    [112] MI J Z, GREGORICH E G, XU S T, et al. Changes in soil biochemical properties following application of bentonite as a soil amendment[J]. European Journal of Soil Biology,2021,102:103251. doi: 10.1016/j.ejsobi.2020.103251
    [113] ZHANG M Y, ZHANG L, RIAZ M, et al. Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in Citrus production[J]. Journal of Cleaner Production,2021,292:126062. doi: 10.1016/j.jclepro.2021.126062
    [114] KLOSS S, ZEHETNER F, WIMMER B, et al. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science,2014,177(1):3-15. doi: 10.1002/jpln.201200282
    [115] MUKHERJEE A, LAL R. The biochar dilemma[J]. Soil Research,2014,52(3):217. doi: 10.1071/SR13359
    [116] SAFAEI KHORRAM M, FATEMI A, KHAN M A, et al. Potential risk of weed outbreak by increasing biochar's application rates in slow-growth legume, lentil (Lens culinaris Medik. )[J]. Journal of the Science of Food and Agriculture,2018,98(6):2080-2088. ◇ doi: 10.1002/jsfa.8689
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  2221
  • HTML全文浏览量:  487
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12

目录

    /

    返回文章
    返回