留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制革工业水污染全过程防治技术组合方案研究

郭亚静 党春阁 韩桂梅 刘菁钧 李子秀 方刚

郭亚静,党春阁,韩桂梅,等.制革工业水污染全过程防治技术组合方案研究[J].环境工程技术学报,2022,12(3):794-801 doi: 10.12153/j.issn.1674-991X.20210225
引用本文: 郭亚静,党春阁,韩桂梅,等.制革工业水污染全过程防治技术组合方案研究[J].环境工程技术学报,2022,12(3):794-801 doi: 10.12153/j.issn.1674-991X.20210225
GUO Y J,DANG C G,HAN G M,et al.Study on the whole-process water pollution prevention and control technology portfolio of tanning industry[J].Journal of Environmental Engineering Technology,2022,12(3):794-801 doi: 10.12153/j.issn.1674-991X.20210225
Citation: GUO Y J,DANG C G,HAN G M,et al.Study on the whole-process water pollution prevention and control technology portfolio of tanning industry[J].Journal of Environmental Engineering Technology,2022,12(3):794-801 doi: 10.12153/j.issn.1674-991X.20210225

制革工业水污染全过程防治技术组合方案研究

doi: 10.12153/j.issn.1674-991X.20210225
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07301-004)
详细信息
    作者简介:

    郭亚静(1988—),女,工程师,主要从事清洁生产管理与技术研究,guoyj@craes.org.cn

    通讯作者:

    方刚(1987—),男,工程师,主要从事清洁生产管理与技术研究,fanggang@craes.org.cn

  • 中图分类号: X703

Study on the whole-process water pollution prevention and control technology portfolio of tanning industry

  • 摘要:

    制革废水具有产生量大、污染物种类多、成分复杂、含重金属等特点,一直是水环境监管的重点。对制革生产工序及废水产排特征进行梳理,通过调研和梳理制革企业排污许可证信息,对目前业内主流的水污染防治技术进行汇总分析,并按照原辅材料替代技术、过程控制技术、末端治理技术对行业主流水污染防治技术进行分类总结,其中,对过程控制技术按污染防治目标污染物进行分类总结,对末端治理技术按废水分质处理要求进行分类总结。基于不同类型制革企业水污染全过程防治需求,推荐16套技术组合方案。最后,结合技术发展情况,对制革工业水污染全过程防治技术发展趋势进行展望,提出强化制革废水分质处理、强化清洁生产技术的研发推广、推进制革企业入园等建议,以期提升行业水污染全过程防治水平和绿色发展水平,助力“十四五”深入打好污染防治攻坚战。

     

  • 图  1  典型制革生产工艺过程及废水污染物产生节点

    Figure  1.  Typical tannery production process and wastewater pollutants generation nodes

    图  2  制革工业废水分质处理技术路线

    Figure  2.  Technical roadmap for quality-specific treatment of wastewater of tanning industry

    表  1  原辅材料替代技术污染物削减效果[9-10]

    Table  1.   Pollutants removal effects of raw and auxiliary material substitution technology

    工序有害物质环境友好型化学
    品/清洁原料皮替代
    削减污染物
    浸水、浸灰、脱脂 难降解表面活性剂、烷基酚聚氧乙烯醚 生物酶制剂、脂肪醇聚氧乙烯醚或支链脂肪醇聚氧乙烯醚 难降解表面活性剂、烷基酚聚氧乙烯醚、低聚氧乙烯、1, 4-二噁烷等
    脱脂 有机卤化物 非卤化溶剂,如线性烷基聚乙二醇醚、羧酸、烷基醚硫酸、烷基硫酸盐 有机卤素污染物
    浸酸 传统有机酸和无机酸 不膨胀酸性化合物 氯离子
    鞣制 含甲醛鞣剂和复鞣剂、非高吸收铬鞣剂 低/无甲醛鞣剂和复鞣剂、高吸收铬鞣剂 甲醛、三价铬
    染整工段 禁用染料 环保型加脂剂、环保型染料、低氨氮复鞣剂、高吸收染整助剂 致癌芳香胺化合物等
    生皮保藏 已限用的杀菌剂、杀虫剂、高盐含量原料皮等 环境友好型杀菌剂、杀虫剂、清洁原料皮 有毒有害杀菌剂、杀虫剂、氯离子等
    下载: 导出CSV

    表  2  过程控制——中性盐污染预防技术

    Table  2.   Process control:neutral salt pollution prevention technology

    技术名称技术内容效果
    转笼除盐技术 依托转笼的机械转动使盐腌皮上的盐脱落,直至2次称重相差不超过1%时将皮取出 可回收约25%的氯化钠,降低废水中性盐浓度[11-12]
    少盐或无盐浸酸
    技术
    软化裸皮时完全或部分使用不膨胀酸性化合物(通常是含有磺酸基的浸酸助剂)替代传统无机酸[13-14] 可将盐用量从6%~10%降至0~5%,从而减少氯离子排放[15-16]
    下载: 导出CSV

    表  3  过程控制——CODCr及硫化物污染预防技术

    Table  3.   Process control: CODCr and sulfide pollution prevention technology

    技术名称技术内容效果
    低硫低灰脱毛技术 采用含硫有机物脱毛剂替代无机硫化物脱毛剂,同时使用酶制剂或非石灰碱性材料。含硫有机物脱毛剂使用量约为盐湿皮质量的1%~2%,分次加入[17] 废液中硫化物和氨氮去除率为40%以上,CODCr去除率为30%以上[18]
    脱毛浸灰废液循环利用技术 直接循环:将脱毛浸灰废液单独收集、沉淀过滤并调节组分(必要时杀菌)后直接回用间接循环:将废液输送至配有曝气搅拌的密闭装置中,加入酸使硫化物逸出,制备为硫化钠回用[1,19] 节水90%以上,回收硫化钠90%以上[20-21]
    下载: 导出CSV

    表  4  过程控制——氨氮污染预防技术

    Table  4.   Process control: ammonia nitrogen pollution prevention technology

    技术名称技术内容效果
    少氨或无氨脱灰技术 采用弱酸、弱酸盐、酸式盐等物质完全或部分替代铵盐,用量为灰皮质量的1%~2%,在30~35 ℃温度下脱灰45~60 min[22-23] 氨氮去除率为50%~70%[24]
    无氨软化技术 采用柠檬酸、柠檬酸盐、磷酸盐等钙螯合剂替代铵盐,用量为灰皮质量的0.2%~2%,溶液pH为7.5~8.5[1] 氨氮去除率为20%~30%[25-26]
    下载: 导出CSV

    表  5  过程控制——铬污染预防技术

    Table  5.   Process control: chrome pollution prevention technology

    技术名称技术内容效果
    高吸收铬鞣技术 添加具有多种官能团的高吸收助鞣剂(含醛基的预鞣剂、丙烯酸聚合物等)和改变鞣制工艺(高pH铬鞣等),以提高铬鞣制工艺中的铬盐吸收率。助剂用量为灰皮质量的1%~2%[27] 铬吸收率提升至80%~95%,铬鞣废液中总铬浓度减少80%以上[28-29]
    铬鞣废液循环利用技术 直接循环:将单独收集的铬鞣废液直接回用于鞣制或复鞣工序[30]间接循环:铬鞣废液经过滤、碱沉淀、水解、氧化、还原等处理后得到再生铬鞣剂回用[31-32];碱沉淀时pH为8.5左右,水解时加酸使pH保持在2.0~2.5 铬鞣废液循环利用率达95%以上,铬鞣废水中总铬浓度降低95%以上[33-34]
    无铬鞣制技术 使用无铬鞣剂(如植物鞣剂、非铬金属鞣剂、醛鞣剂、有机鞣剂等)进行鞣制。不同无铬鞣剂对应的工艺差别较大[35-36] 无含铬废水和含铬固体废物产生
    下载: 导出CSV

    表  6  含铬废水治理技术

    Table  6.   Chromium-containing wastewater treatment technology

    技术名称技术内容效果
    碱沉淀处理技术 一般包括过滤、加碱沉淀、压滤、铬泥配置回用等工序。沉淀剂一般选用氢氧化钠、氧化镁、氧化钙等,铬液pH控制在8.5左右,反应时间为1 h,沉降时间为3 h[37-38] 总铬去除率高达99%[39],处理后总铬浓度低于1.5 mg/L
    下载: 导出CSV

    表  7  综合废水物化处理技术

    Table  7.   Comprehensive wastewater physical and chemical treatment technology

    技术名称技术内容效果
    酸提取 在酸性条件下使脱脂废水破乳并分离,将油脂层回收制备混合脂肪酸 脱脂废水中悬浮物去除率为75%~85%,CODCr去除率大于90%
    催化
    氧化
    使用硫酸锰等催化剂在碱性条件下将S2−氧化成单质硫 含硫废水中S2−去除率达90%以上,出水S2−浓度低于200 mg/L
    酸化
    回收
    通过加入酸性材料,使S2−转化为挥发性的硫化氢气体,制备硫化碱回用 含硫废水中S2−去除率达95%以上,出水S2−浓度低于100 mg/L
    混凝
    沉淀
    投加混凝剂及助凝剂使颗粒互相聚合成胶体,进一步与水中杂质结合形成更大的絮凝体从而下沉,通常沉淀时间约2 h 悬浮物、CODCr和BOD5去除率分别为70%~90%、50%~70%和35%~45%[40]
    混凝
    气浮
    分为加药反应和气浮2个部分,即添加混凝剂和絮凝剂形成较大的絮凝体,再通入气浮分离设备完成固液分离 悬浮物、CODCr和BOD5去除率分别为80%~90%、40%~50%和35%~45%[40]
    下载: 导出CSV

    表  8  综合废水生化处理技术

    Table  8.   Comprehensive wastewater biochemical treatment technology

    技术名称技术内容效果
    水解酸
    化技术
    通过厌氧水解和产酸,使制革废水中的高分子有机物转化为低分子有机物,对复鞣和染色废水的生化调节作用显著[41],HRT宜选取6~12 h,pH为7.5以下 单独使用,CODCr和BOD5去除率分别为10%~30%和10%~20%;与好氧处理工艺相结合,CODCr去除率可达90%,出水氨氮浓度可达15 mg/L以下[42]
    UASB
    技术
    通过与污泥层中微生物的混合接触,分解制革废水中的有机物,但需控制好废水中的硫化物和中性盐浓度 单独使用,CODCr和BOD5去除率为30%~50%;与好氧处理工艺相结合,CODCr去除率可达90%以上[43],出水CODCr达到间接排放标准
    SBR
    工艺
    利用好氧活性污泥,将制革废水在同一反应池内依次进行进水、曝气、沉淀、排水、闲置处理,污泥浓度一般为3.0~5.0 g/L,HRT为30~60 h[44] CODCr、氨氮、总氮去除率分别为80%~90%、80%~95%和55%~85%[45],出水浓度均可达到间接排放标准
    A/O(厌氧-好氧)工艺 利用厌氧生物处理和好氧活性污泥处理技术,对制革废水中的有机物及氨氮、总氮等进行处理,污泥浓度为3 500~4 000 mg/L,HRT不低于24 h[46] CODCr、氨氮和总氮去除率分别大于93%、90%和70%[47],出水浓度均达到间接排放标准,两级A/O工艺的CODCr和氨氮的去除率均可提升至96%以上[48]
    生物接触氧化
    技术
    具有活性污泥法特点的生物膜法,兼具活性污泥法和生物膜法的优点,容积负荷为1~2 kg/(m3·d),HRT为16~36 h[39] CODCr、氨氮、总氮去除率分别为80%~90%、65%~95%和40%~80%,出水浓度可达到间接排放标准
    下载: 导出CSV

    表  9  综合废水深度处理技术

    Table  9.   Comprehensive wastewater advanced treatment technology

    技术名称技术内容效果
    芬顿氧化
    技术
    利用芬顿氧化反应的强氧化能力,有效去除制革废水中的大量有机物,废水pH一般为2~4,时间为30~60 min,氧化后废水应加碱中和10 min以上 悬浮物去除率为50%~70%,CODCr和BOD5去除率分别大于60%和50%[49-50],出水浓度均可达到直接排放标准
    曝气生物滤池(BAF)
    技术
    集曝气、降解有机物、高滤速、定期反冲洗等特点于一体。制革行业适用以硝化去除氨氮为目的的C/N BAF或以深度生物脱氮为目的的DN-C/N BAF。进水悬浮物浓度不宜大于60 mg/L 氨氮去除率达90%,处理后氨氮浓度低于25 mg/L[39],达到直接排放标准
    反渗透膜分离技术 反渗透膜分离技术是实现制革废水污、盐分离的有效途径,进水水质要求CODCr≤100 mg/L,Fe3+浓度≤0.05 mg/L,TDS浓度≤5 000 mg/L[39] 出水可达到特别排放限值要求
    下载: 导出CSV

    表  10  含铬废水全过程污染防治技术组合方案

    Table  10.   Whole-process pollution prevention and control technology portfolio of chromium-containing wastewater

    技术组合序号过程控制技术末端治理技术适用企业类型
    1高吸收铬鞣技术碱沉淀处理 均适用
    2铬鞣废液循环利用技术均适用
    3无铬鞣技术均适用
    4碱沉淀处理均适用
    下载: 导出CSV

    表  11  综合废水全过程污染防治技术组合方案

    Table  11.   Whole-process pollution prevention and control technology portfolio of comprehensive wastewater

    过程控制技术末端治理技术适用企业类型
    ① 原辅材料替代(清洁原料皮替代+环境友好型化学品替代)② 过程控制(低硫低灰脱毛/脱毛浸灰废液循环利用+少氨或无氨脱灰+无氨软化)③ 过程控制(转笼除盐+低硫低灰脱毛/脱毛浸灰废液循环利用+少氨或无氨脱灰+无氨软化) ④ 脱脂废水预处理(酸提取/气浮)+含硫废水预处理(催化氧化/化学絮凝/酸化回收)⑤ 综合废水物化处理(混凝沉淀/混凝气浮)⑥ 好氧生化处理(A/O或其变型工艺/生物接触氧化/ SBR)⑦ 深度处理(芬顿氧化/曝气生物滤池)⑧ 深度处理(渗透膜分离) a类企业技术组合1:①+②+④+⑤+⑥
    技术组合2:①+③+④+⑤+⑥
    c类企业技术组合3:①+②+④+⑤+⑥+⑦
    技术组合4:①+③+④+⑤+⑥+⑦
    e类企业技术组合5:①+②+④+⑤+⑥+⑧
    技术组合6:①+③+④+⑤+⑥+⑧
    ① 原辅材料替代(环境友好型化学品替代) ② 物化处理(混凝沉淀/混凝气浮)③ 厌氧生化处理(水解酸化/UASB④ 好氧生化处理(A/O或其变型工艺/生物接触氧化/ SBR)⑤ 厌氧和好氧生化处理(A/O或其变型工艺)⑥ 深度处理(芬顿氧化/曝气生物滤池)⑦ 深度处理(渗透膜分离) b类企业技术组合7:①+②+③+④
    技术组合8:①+②+⑤
    d类企业技术组合9:①+②+③+④+⑥
    技术组合10:①+②+⑤+⑥
    f类企业技术组合11:①+②+③+④+⑦
    技术组合12:①+②+⑤+⑦
    下载: 导出CSV
  • [1] 王亚楠, 石碧.制革工业关键清洁技术的研究进展[J]. 化工进展,2016,35(6):1865-1874.

    WANG Y N, SHI B. Progress of key clean technologies in leather industry[J]. Chemical Industry and Engineering Progress,2016,35(6):1865-1874.
    [2] MOKTADIR M A, AHMADI H B, SULTANA R, et al. Circular economy practices in the leather industry: a practical step towards sustainable development[J]. Journal of Cleaner Production,2020,251:119737. doi: 10.1016/j.jclepro.2019.119737
    [3] SAWALHA H, ALSHARABATY R, SARSOUR S, et al. Wastewater from leather tanning and processing in Palestine: characterization and management aspects[J]. Journal of Environmental Management,2019,251:109596. doi: 10.1016/j.jenvman.2019.109596
    [4] ZHAO C Q, CHEN W Y. A review for tannery wastewater treatment: some thoughts under stricter discharge requirements[J]. Environmental Science and Pollution Research,2019,26(25):26102-26111. doi: 10.1007/s11356-019-05699-6
    [5] JAYANTHI D, VICTOR J S, CHELLAN R, et al. Green processing: minimising harmful substances in leather making[J]. Environmental Science and Pollution Research,2019,26(7):6782-6790. doi: 10.1007/s11356-018-04111-z
    [6] HANSEN É, MONTEIRO de AQUIM P, HANSEN A W, et al. Impact of post-tanning chemicals on the pollution load of tannery wastewater[J]. Journal of Environmental Management,2020,269:110787. doi: 10.1016/j.jenvman.2020.110787
    [7] 闭文妮, 洪鸣, 陈代红, 等.广西制革行业水污染现状调查及治理对策[J]. 中国皮革,2017,46(8):36-40.

    BI W N, HONG M, CHEN D H, et al. Research on tanning industry water pollution situation and countermeasures of Guangxi Province[J]. China Leather,2017,46(8):36-40.
    [8] 侯瑞光, 苏华轲, 官平, 等.制革工业重金属排放特征及污染预防[J]. 广东化工,2015,42(5):87-89. doi: 10.3969/j.issn.1007-1865.2015.05.047
    [9] 侯春宇.浅析皮革化工的污染与防治策略[J]. 西部皮革,2016,38(18):18. doi: 10.3969/j.issn.1671-1602.2016.18.018
    [10] KANAGARAJ J, SENTHILVELAN T, PANDA R C, 等.一种为了制革行业可持续性发展的更环保的环境友好型产物管理体系概述(上)[J]. 西部皮革,2016,38(15):64-72. doi: 10.3969/j.issn.1671-1602.2016.15.016
    [11] BOOPATHY R, KARTHIKEYAN S, MANDAL A B, et al. Characterisation and recovery of sodium chloride from salt-laden solid waste generated from leather industry[J]. Clean Technologies and Environmental Policy,2013,15(1):117-124. doi: 10.1007/s10098-012-0489-y
    [12] 张志华, 张长, 孙鹏.皮革建设项目清洁生产分析[J]. 皮革与化工,2019,36(4):37-41. doi: 10.3969/j.issn.1674-0939.2019.04.008

    ZHANG Z H, ZHANG C, SUN P. The clean production analysis of leather project[J]. Leather and Chemicals,2019,36(4):37-41. doi: 10.3969/j.issn.1674-0939.2019.04.008
    [13] 张辉, 陈兴幸, 强西怀, 等.无盐浸酸两步铬鞣工艺[J]. 中国皮革,2016,45(4):9-12.

    ZHANG H, CHEN X X, QIANG X H, et al. Two-step chrome tanning technology with salt-free pickling[J]. China Leather,2016,45(4):9-12.
    [14] 王瑞瑞.胶原的膨胀机理及清洁化应用[J]. 西部皮革,2013,35(2):20-23. doi: 10.3969/j.issn.1671-1602.2013.02.007
    [15] CHOWDHURY M, MOSTAFA M G, BISWAS T K, et al. Characterization of the effluents from leather processing industries[J]. Environmental Processes,2015,2(1):173-187. doi: 10.1007/s40710-015-0065-7
    [16] 杜晓声, 陈慧, 单志华, 等.一种少盐浸酸材料的应用研究[J]. 皮革科学与工程,2012,22(4):25-28,33. doi: 10.3969/j.issn.1004-7964.2012.04.005

    DU X S, CHEN H, SHAN Z H, et al. Application study of low-salt pickling auxiliary[J]. Leather Science and Engineering,2012,22(4):25-28,33. doi: 10.3969/j.issn.1004-7964.2012.04.005
    [17] 冯岱.黄牛鞋面革保毛脱毛浸灰工艺控制要点[J]. 中国皮革,2020,49(2):47-48. doi: 10.3969/j.issn.1001-6813.2020.02.010

    FENG D. Key points of cattle upper leather for hair retention and hair removal liming process[J]. China Leather,2020,49(2):47-48. doi: 10.3969/j.issn.1001-6813.2020.02.010
    [18] 何灿, 但年华, 张玉红, 等.几种保毛脱毛法及其作用机理[J]. 西部皮革,2014,36(18):24-29. doi: 10.3969/j.issn.1671-1602.2014.18.010
    [19] 靳丽强, 刘洁, 张斐斐, 等.基于保毛脱毛法的浸灰废液全封闭循环技术的研究[J]. 中国皮革,2018,47(5):33-38.

    JIN L Q, LIU J, ZHANG F F, et al. A close recycling technique of liming wastewater based on hair-saving unhairing process[J]. China Leather,2018,47(5):33-38.
    [20] 石碧, 王学川. 皮革清洁生产技术与原理[M]. 北京: 化学工业出版社, 2010.
    [21] 丁志文, 陈国栋, 庞晓燕.浸灰废液全循环利用技术应用实例[J]. 中国皮革,2017,46(8):66-67. doi: 10.3969/j.issn.1001-6813.2017.08.014

    DING Z W, CHEN G D, PANG X Y. Application example of liming wastewater recycling technology[J]. China Leather,2017,46(8):66-67. doi: 10.3969/j.issn.1001-6813.2017.08.014
    [22] 雷超, 曾运航, 宋映, 等.脱灰材料性质的关键影响因素研究[J]. 皮革科学与工程,2019,29(1):23-28.

    LEI C, ZENG Y H, SONG Y, et al. Investigation of key factors on properties of deliming agents[J]. Leather Science and Engineering,2019,29(1):23-28.
    [23] 孔纤, 曾运航, 郭潇佳, 等.少氨脱灰: 一种实用的氨氮减排技术[J]. 皮革科学与工程,2016,26(1):5-9.

    KONG X, ZENG Y H, GUO X J, et al. Low-ammonia deliming:a practical emission reduction technology of ammonia nitrogen[J]. Leather Science and Engineering,2016,26(1):5-9.
    [24] 李闻欣, 叶宇轩, 刘刚.一种无铵脱灰剂的应用研究[J]. 中国皮革,2012,41(21):8-10.

    LI W X, YE Y X, LIU G. Application of non-ammonium deliming agent[J]. China Leather,2012,41(21):8-10.
    [25] 王亚楠, 石碧, 曾运航, 等. 无氨软化复合酶制剂及其在皮革软化工艺中的应用: CN102876818A[P]. 2013-01-16.
    [26] 曾运航, 石碧, 王亚楠, 等. 无氨软化助剂及其在皮革软化工艺中的应用: CN102876819A[P]. 2013-01-16.
    [27] CHINA C R, MAGUTA M M, NYANDORO S S, et al. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: a comprehensive review[J]. Chemosphere,2020,254:126804. doi: 10.1016/j.chemosphere.2020.126804
    [28] 陈博, 张辉, 强西怀, 等.高吸收铬鞣助剂的研究进展[J]. 中国皮革,2019,48(4):41-46.

    CHEN B, ZHANG H, QIANG X H, et al. Research progress of high absorption chrome auxiliaries[J]. China Leather,2019,48(4):41-46.
    [29] 姚棋, 陈华林.超支化聚合物高吸收铬鞣助剂研究进展[J]. 广东石油化工学院学报,2020,30(1):65-71. doi: 10.3969/j.issn.2095-2562.2020.01.016

    YAO Q, CHEN H L. Research development of cleaner chrome tanning materials[J]. Journal of Guangdong University of Petrochemical Technology,2020,30(1):65-71. doi: 10.3969/j.issn.2095-2562.2020.01.016
    [30] 丁志文, 庞晓燕, 陈国栋.铬鞣废液全循环利用技术应用实例[J]. 中国皮革,2017,46(10):43,56.

    DING Z W, PANG X Y, CHEN G D. Application example of chrome tanning wastewater recycling method[J]. China Leather,2017,46(10):43,56.
    [31] 程玉林, 张金伟, 唐剑锋, 等.碱沉淀铬鞣废液铬泥制备再生铬鞣剂研究[J]. 皮革科学与工程,2018,28(4):5-9.

    CHENG Y L, ZHANG J W, TANG J F, et al. Tanning preparation of agent with chrome sludge[J]. Leather Science and Engineering,2018,28(4):5-9.
    [32] HASHEM M A, MOMEN M A, HASAN M, et al. Chromium removal from tannery wastewater using syzygium cumini bark adsorbent[J]. International Journal of Environmental Science and Technology,2019,16(3):1395-1404. doi: 10.1007/s13762-018-1714-y
    [33] 李闻欣, 刘晨茜, 强西怀, 等.铬鞣废液封闭循环工艺操作液特征分析及效益评估[J]. 中国皮革,2017,46(11):1-6.

    LI W X, LIU C X, QIANG X H, et al. Characteristics analysis and benefit evaluation of chrome tanning waste liquid in closed recycling technology[J]. China Leather,2017,46(11):1-6.
    [34] de AQUIM P M, HANSEN É, GUTTERRES M. Water reuse: an alternative to minimize the environmental impact on the leather industry[J]. Journal of Environmental Management,2019,230:456-463. doi: 10.1016/j.jenvman.2018.09.077
    [35] 乔换灵, 强西怀, 崔璐, 等.皮革无铬鞣制技术的研究现状[J]. 中国皮革,2019,48(9):8-13.

    QIAO H L, QIANG X H, CUI L, et al. Research status of leather chrome-free tanning technology[J]. China Leather,2019,48(9):8-13.
    [36] GAO D G, CHENG Y M, WANG P P, et al. An eco-friendly approach for leather manufacture based on P(POSS-MAA)-aluminum tanning agent combination tannage[J]. Journal of Cleaner Production,2020,257:120546. doi: 10.1016/j.jclepro.2020.120546
    [37] MELLA B, GLANERT A C, GUTTERRES M. Removal of chromium from tanning wastewater and its reuse[J]. Process Safety and Environmental Protection,2015,95:195-201. doi: 10.1016/j.psep.2015.03.007
    [38] 郝永永, 马宏瑞, 王晴, 等.制革废水中铬的形态及其沉淀过程研究进展[J]. 化学工业与工程,2019,36(1):48-58.

    HAO Y Y, MA H R, WANG Q, et al. Study on the speciation and precipitation process of the chromium in tannery wastewater[J]. Chemical Industry and Engineering,2019,36(1):48-58.
    [39] 吴浩汀. 制革工业废水处理技术及工程实例[M]. 2版. 北京: 化学工业出版社, 2010.
    [40] 李闻欣. 皮革环保工程概论[M]. 北京: 中国轻工业出版社, 2015.
    [41] SODHI V, BANSAL A, JHA M K. Minimization of excess bio-sludge and pollution load in oxic-settling-anaerobic modified activated sludge treatment for tannery wastewater[J]. Journal of Cleaner Production,2020,243:118492. doi: 10.1016/j.jclepro.2019.118492
    [42] 刘晓龙.水解酸化池预处理皮革废水的效能探析[J]. 皮革制作与环保科技,2020,1(3):63-66.

    LIU X L. Study on the efficiency of pretreatment of leather wastewater by hydrolysis acidification tank[J]. Leather Manufacture and Environmental Technology,2020,1(3):63-66.
    [43] 刘兴, 陈茂林, 钱为, 等.UASB处理制革废水的酸化及其恢复研究[J]. 中国给水排水,2013,29(9):1-4. doi: 10.3969/j.issn.1000-4602.2013.09.001

    LIU X, CHEN M L, QIAN W, et al. Acidification and its recovery in UASB reactor for treatment of tannery wastewater[J]. China Water & Wastewater,2013,29(9):1-4. doi: 10.3969/j.issn.1000-4602.2013.09.001
    [44] 朱蕾.SBR工艺在处理模拟制革废水中运行参数的优化[J]. 渭南师范学院学报,2014,29(19):34-38. doi: 10.3969/j.issn.1009-5128.2014.19.008
    [45] 杨肖肖, 吴红波, 王国田.气浮-混凝沉淀-水解酸化-SBR工艺处理制革废水[J]. 工业用水与废水,2017,48(3):70-73. doi: 10.3969/j.issn.1009-2455.2017.03.017

    YANG X X, WU H B, WANG G T. Treatment of tanning wastewater by air flotation-coagulation sedimentation-hydraulic acidification-SBR process[J]. Industrial Water & Wastewater,2017,48(3):70-73. doi: 10.3969/j.issn.1009-2455.2017.03.017
    [46] 付翠彦. “混凝沉淀-A/O”工艺处理制革废水运行控制研究[D]. 石家庄: 河北科技大学, 2016.
    [47] 钟华文, 叶芳芳, 聂丽君, 等.AO生物脱氮工艺处理皮革废水研究[J]. 广东石油化工学院学报,2020,30(3):11-14. doi: 10.3969/j.issn.2095-2562.2020.03.003

    ZHONG H W, YE F F, NIE L J, et al. Study of leather wastewater treatment by AO process[J]. Journal of Guangdong University of Petrochemical Technology,2020,30(3):11-14. doi: 10.3969/j.issn.2095-2562.2020.03.003
    [48] 陈青松, 郑群敦, 杨林, 等.多级A/O工艺处理制革废水的影响因素研究[J]. 环境科学与管理,2013,38(6):111-116. doi: 10.3969/j.issn.1673-1212.2013.06.024

    CHEN Q S, ZHENG Q D, YANG L, et al. Experimental research on tannery wastewater treatment by multistage A/O process[J]. Environmental Science and Management,2013,38(6):111-116. doi: 10.3969/j.issn.1673-1212.2013.06.024
    [49] LOFRANO G, MERIC S, INGLESE M, et al. Fenton oxidation treatment of tannery wastewater and tanning agents: synthetic tannin and nonylphenol ethoxylate based degreasing agent[J]. Desalination and Water Treatment,2010,23(1/2/3):173-180.
    [50] MANDAL T, DASGUPTA D, MANDAL S, et al. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process[J]. Journal of Hazardous Materials,2010,180(1/2/3):204-211.
    [51] 梅艳.制革废水分质处理技术简述[J]. 绿色科技,2020(8):70-71,82. doi: 10.3969/j.issn.1674-9944.2020.08.029
    [52] 王立璇, 高雅男, 王麟.制革工业废水污染治理现状及对策研究[J]. 化工管理,2017(30):123-124. ⊗ doi: 10.3969/j.issn.1008-4800.2017.30.109
  • 加载中
图(2) / 表(11)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  198
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回