留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热炭在土壤环境中的应用研究进展和展望

程虎 张佳鹏 宋洋 卞永荣 李威 李胎花 张萌 蒋新 韩建刚

程虎, 张佳鹏, 宋洋, 卞永荣, 李威, 李胎花, 张萌, 蒋新, 韩建刚. 水热炭在土壤环境中的应用研究进展和展望[J]. 环境工程技术学报, 2021, 11(6): 1202-1209. doi: 10.12153/j.issn.1674-991X.20210378
引用本文: 程虎, 张佳鹏, 宋洋, 卞永荣, 李威, 李胎花, 张萌, 蒋新, 韩建刚. 水热炭在土壤环境中的应用研究进展和展望[J]. 环境工程技术学报, 2021, 11(6): 1202-1209. doi: 10.12153/j.issn.1674-991X.20210378
CHENG Hu, ZHANG Jiapeng, SONG Yang, BIAN Yongrong, LI Wei, LI Taihua, ZHANG Meng, JIANG Xin, HAN Jiangang. The application of hydrochar in soil environment: study progress and prospects[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1202-1209. doi: 10.12153/j.issn.1674-991X.20210378
Citation: CHENG Hu, ZHANG Jiapeng, SONG Yang, BIAN Yongrong, LI Wei, LI Taihua, ZHANG Meng, JIANG Xin, HAN Jiangang. The application of hydrochar in soil environment: study progress and prospects[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1202-1209. doi: 10.12153/j.issn.1674-991X.20210378

水热炭在土壤环境中的应用研究进展和展望

doi: 10.12153/j.issn.1674-991X.20210378
详细信息
    作者简介:

    程虎(1994—),男,讲师,博士,主要从事污染土壤修复、农林牧废物资源化、环境分析化学研究, hucheng@njfu.edu.cn

    通讯作者:

    蒋新 E-mail: jiangxin@issas.ac.cn

    韩建刚 E-mail: hjg@njfu.edu.cn

  • 中图分类号: X712,S156

The application of hydrochar in soil environment: study progress and prospects

More Information
    Corresponding author: JIANG Xin E-mail: jiangxin@issas.ac.cn; HAN Jiangang E-mail: hjg@njfu.edu.cn
  • 摘要: 近年来,水热处理农林生物质废物制备水热炭成为新兴的固体废物资源化方式。由于水热炭在改良土壤、提升地力、减排温室气体、修复污染土壤等方面表现出优异的性能,将其还田应用已成为农林业环境领域的研究热点和重点。系统分析了水热炭的制备过程,及其还田应用中对土壤理化性质、温室气体排放和污染土壤修复方面的影响、效果与潜在机制,指出了水热炭在还田应用中存在的问题,并提出未来的研究思路与重点方向,以期为推动、管理、指导水热炭在土壤环境中的应用提供参考与借鉴。

     

  • [1] 孟军, 张伟明, 王绍斌, 等. 农林废弃物炭化还田技术的发展与前景[J]. 沈阳农业大学学报, 2011, 42(4):387-392.

    MENG J, ZHANG W M, WANG S B, et al. Development and prospect of carbonization and returning technology of agro-forestry residue[J]. Journal of Shenyang Agricultural University, 2011, 42(4):387-392.
    [2] KHAN N, MOHAN S, DINESHA P. Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass:a review[J]. Journal of Cleaner Production, 2021, 288:125629.
    doi: 10.1016/j.jclepro.2020.125629
    [3] FANG J E, ZHAN L, OK Y S, et al. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass[J]. Journal of Industrial and Engineering Chemistry, 2018, 57:15-21.
    doi: 10.1016/j.jiec.2017.08.026
    [4] WANG T F, ZHAI Y B, ZHU Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation:process conditions,fundamentals,and physicochemical properties[J]. Renewable and Sustainable Energy Reviews, 2018, 90:223-247.
    doi: 10.1016/j.rser.2018.03.071
    [5] 赵其国, 滕应, 黄国勤. 中国探索实行耕地轮作休耕制度试点问题的战略思考[J]. 生态环境学报, 2017, 26(1):1-5.

    ZHAO Q G, TENG Y, HUANG G Q. Consideration about exploring pilot program of farmland rotation and fallow system in China[J]. Ecology and Environmental Sciences, 2017, 26(1):1-5.
    [6] NZEDIEGWU C, NAETH M A, CHANG S X. Carbonization temperature and feedstock type interactively affect chemical,fuel,and surface properties of hydrochars[J]. Bioresource Technology, 2021, 330:124976.
    doi: 10.1016/j.biortech.2021.124976
    [7] WU L, WEI W, WANG D B, et al. Improving nutrients removal and energy recovery from wastes using hydrochar[J]. Science of the Total Environment, 2021, 783:146980.
    doi: 10.1016/j.scitotenv.2021.146980
    [8] SHARMA H B, SARMAH A K, DUBEY B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production:a discussion on process mechanism,the influence of process parameters,environmental performance and fuel properties of hydrochar[J]. Renewable and Sustainable Energy Reviews, 2020, 123:109761.
    doi: 10.1016/j.rser.2020.109761
    [9] LI L, WANG Y Y, XU J T, et al. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield,carbon content,and energy content[J]. Bioresource Technology, 2018, 262:284-293.
    doi: 10.1016/j.biortech.2018.04.066
    [10] LENG L J, YANG L H, LENG S Q, et al. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen[J]. Science of the Total Environment, 2021, 756:143679.
    doi: 10.1016/j.scitotenv.2020.143679
    [11] WÜST D, CORREA C R, JUNG D, et al. Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar[J]. Biomass Conversion and Biorefinery, 2020, 10(4):1357-1380.
    doi: 10.1007/s13399-019-00488-0
    [12] CHENG H, BIAN Y R, WANG F, et al. Green conversion of crop residues into porous carbons and their application to efficiently remove polycyclic aromatic hydrocarbons from water:sorption kinetics,isotherms and mechanism[J]. Bioresource Technology, 2019, 284:1-8.
    doi: 10.1016/j.biortech.2019.03.104
    [13] CHENG H, SONG Y, WANG F, et al. Facile synjournal of hierarchical porous carbon from crude biomass for high-performance solid-phase microextraction[J]. Journal of Chromatography A, 2018, 1548:1-9.
    doi: 10.1016/j.chroma.2018.03.019
    [14] LIU T, CHEN Z S, LI Z X, et al. Preparation of magnetic hydrochar derived from iron-rich Phytolacca acinosa Roxb. for Cd removal[J]. Science of the Total Environment, 2021, 769:145159.
    doi: 10.1016/j.scitotenv.2021.145159
    [15] BARGMANN I, MARTENS R, RILLIG M C, et al. Hydrochar amendment promotes microbial immobilization of mineral nitrogen[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):59-67.
    doi: 10.1002/jpln.201300154
    [16] 张曾, 宋成芳, 单胜道, 等. 猪粪水热炭对土壤有机碳矿化及土壤性质的影响[J]. 浙江农林大学学报, 2021, 38(4):765-773.

    ZHANG Z, SONG C F, SHAN S D, et al. Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties[J]. Journal of Zhejiang A&F University, 2021, 38(4):765-773.
    [17] ABEL S, PETERS A, TRINKS S, et al. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 2013, 202/203:183-191.
    doi: 10.1016/j.geoderma.2013.03.003
    [18] GASCÓ G, PAZ-FERREIRO J, ÁLVAREZ M L, et al. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure[J]. Waste Management, 2018, 79:395-403.
    doi: 10.1016/j.wasman.2018.08.015
    [19] MAU V, ARYE G, GROSS A. Poultry litter hydrochar as an amendment for sandy soils[J]. Journal of Environmental Management, 2020, 271:110959.
    doi: 10.1016/j.jenvman.2020.110959
    [20] RÖHRDANZ M, REBLING T, OHLERT J, et al. Hydrothermal carbonization of biomass from landscape management:influence of process parameters on soil properties of hydrochars[J]. Journal of Environmental Management, 2016, 173:72-78.
    doi: 10.1016/j.jenvman.2016.03.006
    [21] LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry,processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1):71-106.
    [22] BARGMANN I, RILLIG M C, KRUSE A, et al. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):48-58.
    doi: 10.1002/jpln.v177.1
    [23] 侯朋福, 薛利红, 冯彦房, 等. 废弃物基水热炭改良对水稻产量及氮素吸收的影响[J]. 环境科学, 2020, 41(12):5648-5655.

    HOU P F, XUE L H, FENG Y F, et al. Effects of modified biowaste-based hydrochar on rice yield and nitrogen uptake[J]. Environmental Science, 2020, 41(12):5648-5655.
    [24] THUILLE A, LAUFER J, HÖHL C, et al. Carbon quality affects the nitrogen partitioning between plants and soil microorganisms[J]. Soil Biology and Biochemistry, 2015, 81:266-274.
    doi: 10.1016/j.soilbio.2014.11.024
    [25] WATSON C, SCHLÖSSER C, VÖGERL J, et al. Hydrochar,digestate,and process water impacts on a soil’s microbial community,processes,and metal bioavailability[J]. Soil Science Society of America Journal, 2021, 85(3):717-731.
    doi: 10.1002/saj2.v85.3
    [26] JI R T, SU L H, CHENG H, et al. Insights into the potential release of dissolved organic matter from different agro-forest waste-derived hydrochars:a pilot study[J]. Journal of Cleaner Production, 2021, 319:128676.
    doi: 10.1016/j.jclepro.2021.128676
    [27] SUN K, HAN L F, YANG Y, et al. Application of hydrochar altered soil microbial community composition and the molecular structure of native soil organic carbon in a paddy soil[J]. Environmental Science & Technology, 2020, 54(5):2715-2725.
    doi: 10.1021/acs.est.9b05864
    [28] PAZ-FERREIRO J, ÁLVAREZ-CALVO M L, de FIGUEIREDO C C, et al. Effect of biochar and hydrochar on forms of aluminium in an acidic soil[J]. Applied Sciences, 2020, 10(21):7843.
    doi: 10.3390/app10217843
    [29] FAN G P, TONG F, ZHANG W G, et al. The effect of organic solvent washing on the structure of hydrochar-based dissolved organic matters and its potential environmental toxicity[J]. Environmental Science and Pollution Research, 2021, 28(21):26584-26594.
    doi: 10.1007/s11356-021-12517-5
    [30] HAO S L, ZHU X D, LIU Y C, et al. Production temperature effects on the structure of hydrochar-derived dissolved organic matter and associated toxicity[J]. Environmental Science & Technology, 2018, 52(13):7486-7495.
    doi: 10.1021/acs.est.7b04983
    [31] HITZL M, MENDEZ A, OWSIANIAK M, et al. Making hydrochar suitable for agricultural soil:a thermal treatment to remove organic phytotoxic compounds[J]. Journal of Environmental Chemical Engineering, 2018, 6(6):7029-7034.
    doi: 10.1016/j.jece.2018.10.064
    [32] DICKE C, LANZA G, MUMME J, et al. Effect of hydrothermally carbonized char application on trace gas emissions from two sandy soil horizons[J]. Journal of Environmental Quality, 2014, 43(5):1790-1798.
    doi: 10.2134/jeq2013.12.0513
    [33] KAMMANN C, RATERING S, ECKHARD C, et al. Biochar and hydrochar effects on greenhouse gas (carbon dioxide,nitrous oxide,and methane) fluxes from soils[J]. Journal of Environmental Quality, 2012, 41(4):1052-1066.
    doi: 10.2134/jeq2011.0132
    [34] MALGHANI S, JÜSCHKE E, BAUMERT J, et al. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils:results of a 1-year field study[J]. Biology and Fertility of Soils, 2015, 51(1):123-134.
    doi: 10.1007/s00374-014-0980-1
    [35] SONG C F, SHAN S D, YANG C, et al. The comparison of dissolved organic matter in hydrochars and biochars from pig manure[J]. Science of the Total Environment, 2020, 720:137423.
    doi: 10.1016/j.scitotenv.2020.137423
    [36] ADJUIK T, RODJOM A M, MILLER K E, et al. Application of hydrochar,digestate,and synthetic fertilizer to a Miscanthus x giganteus crop:implications for biomass and greenhouse gas emissions[J]. Applied Sciences, 2020, 10(24):8953.
    doi: 10.3390/app10248953
    [37] CHENG H, JI R T, YAO S, et al. Potential release of dissolved organic matter from agricultural residue-derived hydrochar:insight from excitation emission matrix and parallel factor analysis[J]. Science of the Total Environment, 2021, 781:146712.
    doi: 10.1016/j.scitotenv.2021.146712
    [38] GAJIĆ A, RAMKE H G, HENDRICKS A, et al. Microcosm study on the decomposability of hydrochars in a Cambisol[J]. Biomass and Bioenergy, 2012, 47:250-259.
    doi: 10.1016/j.biombioe.2012.09.036
    [39] BENTO L R, SPACCINI R, CANGEMI S, et al. Hydrochar obtained with by-products from the sugarcane industry:molecular features and effects of extracts on maize seed germination[J]. Journal of Environmental Management, 2021, 281:111878.
    doi: 10.1016/j.jenvman.2020.111878
    [40] CELLETTI S, BERGAMO A, BENEDETTI V, et al. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate[J]. Journal of Environmental Management, 2021, 280:111635.
    doi: 10.1016/j.jenvman.2020.111635
    [41] GEORGE C, WAGNER M, KÜCKE M, et al. Divergent consequences of hydrochar in the plant-soil system:arbuscular mycorrhiza,nodulation,plant growth and soil aggregation effects[J]. Applied Soil Ecology, 2012, 59:68-72.
    doi: 10.1016/j.apsoil.2012.02.021
    [42] LARANJA M J, da SILVA R C J, BISINOTI M C, et al. Semivolatile organic compounds in the products from hydrothermal carbonisation of sugar cane bagasse and vinasse by gas chromatography-mass spectrometry[J]. Bioresource Technology Reports, 2020, 12:100594.
    doi: 10.1016/j.biteb.2020.100594
    [43] REX D, SCHIMMELPFENNIG S, JANSEN-WILLEMS A, et al. Microbial community shifts 2.6 years after top dressing of Miscanthus biochar,hydrochar and feedstock on a temperate grassland site[J]. Plant and Soil, 2015, 397(1/2):261-271.
    doi: 10.1007/s11104-015-2618-y
    [44] ZHOU B B, FENG Y F, WANG Y M, et al. Impact of hydrochar on rice paddy CH4 and N2O emissions:a comparative study with pyrochar[J]. Chemosphere, 2018, 204:474-482.
    doi: 10.1016/j.chemosphere.2018.04.056
    [45] JI M Y, SANG W J, TSANG D C W, et al. Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil[J]. Science of the Total Environment, 2020, 714:136769.
    doi: 10.1016/j.scitotenv.2020.136769
    [46] TAKAYA C A, FLETCHER L A, SINGH S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016, 145:518-527.
    doi: 10.1016/j.chemosphere.2015.11.052
    [47] ANDERT J, MUMME J. Impact of pyrolysis and hydrothermal biochar on gas-emitting activity of soil microorganisms and bacterial and archaeal community composition[J]. Applied Soil Ecology, 2015, 96:225-239.
    doi: 10.1016/j.apsoil.2015.08.019
    [48] MALGHANI S, GLEIXNER G, TRUMBORE S E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions[J]. Soil Biology and Biochemistry, 2013, 62:137-146.
    doi: 10.1016/j.soilbio.2013.03.013
    [49] HOU P F, FENG Y F, WANG N, et al. Win-win:application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems[J]. Science of the Total Environment, 2020, 748:142457.
    doi: 10.1016/j.scitotenv.2020.142457
    [50] STOCKMANN U, ADAMS M A, CRAWFORD J W, et al. The knowns,known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture,Ecosystems & Environment, 2013, 164:80-99.
    doi: 10.1016/j.agee.2012.10.001
    [51] XU X T, HE C, YUAN X, et al. Rice straw biochar mitigated more N2O emissions from fertilized paddy soil with higher water content than that derived from ex situ biowaste[J]. Environmental Pollution, 2020, 263:114477.
    doi: 10.1016/j.envpol.2020.114477
    [52] EL-NAGGAR A, EL-NAGGAR A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release,carbon mineralization,and potential environmental risk:a review[J]. Journal of Environmental Management, 2019, 241:458-467.
    doi: S0301-4797(19)30195-1 pmid: 31027831
    [53] GÄRDENÄS A I, ÅGREN G I, BIRD J A, et al. Knowledge gaps in soil carbon and nitrogen interactions:from molecular to global scale[J]. Soil Biology and Biochemistry, 2011, 43(4):702-717.
    doi: 10.1016/j.soilbio.2010.04.006
    [54] SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8:14873.
    doi: 10.1038/ncomms14873
    [55] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota:a review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836.
    doi: 10.1016/j.soilbio.2011.04.022
    [56] CHEN D Y, ZHOU Y B, XU C, et al. Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions:a whole growth period investigation[J]. Environmental Pollution, 2021, 274:116573.
    doi: 10.1016/j.envpol.2021.116573
    [57] HAN L F, RO K S, SUN K, et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants[J]. Environmental Science & Technology, 2016, 50(24):13274-13282.
    doi: 10.1021/acs.est.6b02401
    [58] LIU Z Y, WANG Z H, CHEN H X, et al. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas:a critical review[J]. Environmental Pollution, 2021, 268:115910.
    doi: 10.1016/j.envpol.2020.115910
    [59] 张双杰, 邢宝林, 黄光许, 等. 核桃壳水热炭对六价铬的吸附特性[J]. 化工进展, 2016, 35(3):950-956.

    ZHANG S J, XING B L, HUANG G X, et al. A study on adsorption of Cr(Ⅵ) by hydrothermal carbon from walnut shell[J]. Chemical Industry and Engineering Progress, 2016, 35(3):950-956.
    [60] REN J, WANG F H, ZHAI Y B, et al. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil[J]. Chemosphere, 2017, 189:627-633.
    doi: 10.1016/j.chemosphere.2017.09.102
    [61] 杨婷婷, 孟莉蓉, 吴继阳, 等. 水热炭对水土环境中重金属铅的固持[J]. 环境工程, 2017, 35(7):1-6,69.

    YANG T T, MENG L R, WU J Y, et al. Immobilization of Pb in contaminated water and soil by hydrothermal carbon[J]. Environmental Engineering, 2017, 35(7):1-6,69.
    [62] SATI M, VERMA M, RAI J P N. Biosorption of heavy metals from single and multimetal solutions by free and immobilized cells of Bacillus megaterium[J]. International Journal of Advanced Research, 2014, 2:923-934.
    [63] CÁRDENAS-AGUIAR E, SUÁREZ G, PAZ-FERREIRO J, et al. Remediation of mining soils by combining Brassica napus growth and amendment with chars from manure waste[J]. Chemosphere, 2020, 261:127798.
    doi: 10.1016/j.chemosphere.2020.127798
    [64] CÁRDENAS-AGUIAR E, RUIZ B, FUENTE E, et al. Improving mining soil phytoremediation with Sinapis alba by addition of hydrochars and biochar from manure wastes[J]. Waste and Biomass Valorization, 2020, 11(10):5197-5210.
    doi: 10.1007/s12649-020-00999-2
    [65] EIBISCH N, SCHROLL R, FUß R. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil[J]. Chemosphere, 2015, 134:528-535.
    doi: 10.1016/j.chemosphere.2014.11.074
    [66] ISAKOVSKI M K, MALETIĆ S, TAMINDŽIJA D, et al. Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment[J]. Journal of Environmental Management, 2020, 274:111156.
    doi: 10.1016/j.jenvman.2020.111156
    [67] SUN K, GAO B, RO K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J]. Environmental Pollution, 2012, 163:167-173.
    doi: 10.1016/j.envpol.2011.12.015
    [68] TONG S Q, SHEN J Y, JIANG X B, et al. Recycle of Fenton sludge through one-step synjournal of aminated magnetic hydrochar for Pb2+ removal from wastewater[J]. Journal of Hazardous Materials, 2021, 406:124581.
    doi: 10.1016/j.jhazmat.2020.124581
    [69] ZHANG S, SHENG K C, YAN W, et al. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization[J]. Chemosphere, 2021, 263:128093.
    doi: 10.1016/j.chemosphere.2020.128093
    [70] ZHANG X Y, XIANG W, WANG B, et al. Adsorption of acetone and cyclohexane onto CO2 activated hydrochars[J]. Chemosphere, 2020, 245:125664.
    doi: 10.1016/j.chemosphere.2019.125664
    [71] XIA Y, LUO H N, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar:performance,plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261:114217.
    doi: 10.1016/j.envpol.2020.114217
    [72] XIA Y, LIU H J, GUO Y C, et al. Immobilization of heavy metals in contaminated soils by modified hydrochar:efficiency,risk assessment and potential mechanisms[J]. Science of the Total Environment, 2019, 685:1201-1208.
    doi: 10.1016/j.scitotenv.2019.06.288
    [73] TENG F Y, ZHANG Y X, WANG D Q, et al. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil[J]. Journal of Hazardous Materials, 2020, 398:122977.
    doi: 10.1016/j.jhazmat.2020.122977
    [74] YUE Y, YAO Y, LIN Q M, et al. The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars[J]. Journal of Soils and Sediments, 2017, 17(3):763-770.
    doi: 10.1007/s11368-015-1312-2
    [75] 郑孟杰, 靳红梅, 张松贺, 等. 猪粪沼渣水热炭中重金属浸出特征研究[J]. 农业环境科学学报, 2018, 37(1):157-164.

    ZHENG M J, JIN H M, ZHANG S H, et al. The leaching characteristics of heavy metals from hydrochars of digested swine manure[J]. Journal of Agro-Environment Science, 2018, 37(1):157-164.
  • 加载中
计量
  • 文章访问数:  679
  • HTML全文浏览量:  150
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回