Optimization of hydrophyte configuration route in constructed wetlands in China based on literature analysis
-
摘要:
人工湿地由于投资费用低、净化处理效果好、景观性强被广泛应用于水环境污染修复中,但缺乏完整的针对不同条件的人工湿地植物配置的规范化路线。采用文献检索分析方法,对中国知网210篇人工湿地文献中的465个植物组合数据进行筛选与分析,并根据分析结果构建了人工湿地单物种确定、组合搭配、系统搭建、景观配置、空间配置的植物配置优化路线,提出了每个配置步骤的技术内容与供选植物清单。单物种确定中,提出将菖蒲、 美人蕉、 芦苇、香蒲、鸢尾5种水生植物作为主要功能植物;组合搭配中,根据进水营养盐浓度确定植物的组合方式;系统搭建中,补充不同类型水生植物或冬季水生植物;景观配置中,根据花色、花期、植株高度及观赏特性补充水生植物;空间配置中,从营养盐去除效果、景观效果、人工湿地系统生物多样性、抗水力冲刷能力4个角度配置水生植物。该植物配置路线可为人工湿地设计中植物配置的规范化提供参考。
Abstract:The constructed wetland has been widely used in the remediation of water environment pollution due to its low investment cost, efficient water purification and harmonious landscape. However, there is a lack of complete standardized route for the configuration of plants in constructed wetlands under different conditions. 465 hydrophyte combination data in 210 constructed wetland literatures were screened and analyzed by using the method of literature retrieval and analysis. Based on the analysis results, a five-step hydrophyte configuration route for constructed wetland was constructed, including single species determination, configuration and collocation, system construction, landscape configuration, and space configuration. The technical content of each configuration step and the proposed list of the available hydrophytes were put forward. In the step of single species determination, five species of aquatic plants (Acorus calamus, Canna indica, Phragmites communis, Typha orientalis, Iris tectorum) were identified as the predominant functional hydrophyte. In the step of configuration and collocation, hydrophyte combinations were made according to the nutrient salt concentration of incoming water. In the step of system construction, different types or winter hydrophyte were supplemented. In the step of landscape configuration, hydrophyte was supplemented according to flower color, flowering period, height and ornamental characteristics. In the step of space configuration, the space configuration of hydrophyte was made from nutrient salt removal effect, landscape effect, biodiversity of artificial wetland system, and resistance to hydraulic scouring. This hydrophyte configuration route can provide a reference for the standardization of the hydrophyte configuration during constructed wetland design.
-
Key words:
- constructed wetland /
- hydrophyte /
- hydrophyte configuration /
- removal efficiency /
- literature analysis
-
表 1 我国相关规范/指南中对人工湿地植物配置的要求
Table 1. Requirements for hydrophyte configuration of constructed wetland in relevant specifications and guidelines in China
发布年份 规范名称 发布部门 植物配置要求 2021 《人工湿地水质净化技术指南》
(环办水体函〔2021〕173号)生态环境部 可选择1种或多种植物作为优势种搭配栽种,增加植物的多样性和景观效果;根据水深合理配置挺水植物、浮水植物和沉水植物,并根据季节合理配置不同生长期的水生植物 2017 CJJ/T 54—2017《污水自然
处理工程技术规程》住房和城乡建设部 人工湿地的植物可由1种或几种植物搭配构成,配置时应根据植物去除污染物的特性、生长周期、景观效果和环境条件等因素,合理配置植物种类 2010 HJ 2005—2010《人工湿地污水
处理工程技术规范》原环境保护部 可选择1种或多种植物作为优势种搭配栽种,增加植物的多样性并具有景观效果 2020 DB41/T 1947—2020《污水处理厂
尾水人工湿地工程技术规范》河南省生态环境厅、
河南省市场监督管理局人工湿地的植物可由1种或几种植物搭配构成,应根据植物去除污染物的特性、生长周期、景观效果等因素合理配置,增加人工湿地的多样性、经济性和景观性 2019 DB/T 29—259—2019《天津市人工
湿地污水处理技术规程》天津市住房和城乡
建设委员会可由1种或几种植物配置构成,应根据植物去除污染物的特性、生长周期、景观效果等因素合理配置,增加湿地的多样性、经济型和景观性 2018 DB37/T 3394—2018《人工湿地
水质净化工程技术指南》山东省质量技术监督局 应根据人工湿地水深合理配置挺水植物、浮叶植物和沉水植物,并根据季节合理配置不同生长期的水生植物 2016 DB11/T 1376—2016《农村生活污水
人工湿地处理工程技术规范》北京市质量技术监督局 可选择多品种植物分区搭配种植,强调植物的多样性及景观效果 2015 《浙江省生活污水人工湿地
处理工程技术规程》浙江省环保产业协会 可由1种或几种植物搭配构成,配置时根据植物的耐污特性、生长周期、景观效果、环境条件等因素确定其品种和空间分布 表 2 相关文献中主要挺水植物覆盖的气候分区
Table 2. Climate zones of predominant emergent hydrophyte covered by literature
气候分区 平均气温 菖蒲 美人蕉 芦苇 香蒲 鸢尾 严寒地区 1月,≤−10 ℃; 7月,≤25 ℃ · — $\bullet$ · — 寒冷地区 1月,−10~0 ℃; 7月,18~28 ℃ ● ● ● ● $\bullet$ 夏热冬冷地区 1月,0~10 ℃; 7月,25~30 ℃ ● $\bullet$ $\bullet$ $\bullet$ ● 夏热冬暖地区 1月,>10 ℃; 7月,25~29 ℃ $\bullet$ ● ● $\bullet$ ● 温和地区 1月,0~13 ℃; 7月,18~25 ℃ $\bullet$ ● $\bullet$ $\bullet$ $\bullet$ 注:●表示出现次数≥10;$\bullet$表示出现次数为5~10;·表示出现次数<5;—表示未出现。 表 3 5种主要功能植物的不同植物组合数量
Table 3. Number of different configuration patterns of 5 predominant functional hydrophyte
个 功能
植物2种植物 3种植物 4种植物 5种植物 合计 菖蒲 32 13 10 3 58 美人蕉 24 21 6 3 54 芦苇 29 17 4 0 50 香蒲 23 12 4 0 39 鸢尾 14 12 6 4 36 合计 122 75 30 10 237 表 4 5种主要功能植物的常见搭配植物
Table 4. Common matching plants of 5 predominant functional hydrophyte
功能植物 与主要功能植物搭配的植物出现的次数 菖蒲 香蒲(13次)、美人蕉(12次)、水葱(7次)、再力花(6次)、旱伞草(6次)、鸢尾(7次)、千屈菜(4次)、茭白(4次)、灯心草(3次)、芦苇(3次) 美人蕉 菖蒲(12次)、梭鱼草(9次)、再力花(7次)、水葱(6次)、香蒲(5次)、鸢尾(5次)、芦苇(3次)、茭白(3次)、千屈菜(3次) 芦苇 香蒲(9次)、薄荷(6次)、水葱(5次)、梭鱼草(4次)、芦竹(4次)、灯心草(4次)、美人蕉(3次)、鸢尾(3次)、茭白(3次)、菖蒲(3次)、再力花(2次)、千屈菜(2次) 香蒲 菖蒲(13次)、芦苇(9次)、美人蕉(5次)、再力花(3次)、鸢尾(2次)、水葱(2次)、茭白(2次) 鸢尾 菖蒲(7次)、美人蕉(5次)、水葱(5次)、再力花(4次)、灯心草(4次)、梭鱼草(3次)、芦苇(3次)、香蒲(2次) 表 5 人工湿地中常用水生植物的景观特性
Table 5. Landscape characteristics of common hydrophyte in constructed wetlands
植物类型 植物名称 花期 花色 植株高度/cm 观赏特性 挺水植物 水葱 6—9月 橘黄色 80~200 茎秆密集直立,通直无叶,花密生 美人蕉 3—12月 红色、黄色 100~200 叶茂花繁,可点缀景观 鸢尾 4—5月 蓝紫色 30~50 叶片青翠,花型大而齐 再力花 4—10月 紫色 200~300 紫色圆锥花序挺立半空,叶片青绿 梭鱼草 6—7月 紫色 40~70 蓝色小花组成花穗,株丛繁茂紧凑 纸莎草 6—7月 紫色 150~300 苞叶针状密集,伞形花序 荷花 6—9月 白色、粉红色 30~50 高大色艳,叶片
青绿千屈菜 7—8月 紫色 60~120 花朵细小量多,聚成花序色彩醒目 浮叶植物 芡实 7—8月 紫色 叶片碧绿且有皱褶,花色艳丽 睡莲 6—8月 白色 花单生,叶圆形,体态舒展 荇菜 4—10月 黄色 伞形花序 漂浮植物 菱 5—10月 白色 叶片美观繁茂,开白色小花 -
[1] 吴树彪, 董仁杰. 人工湿地生态水污染控制理论与技术[M]. 北京: 中国林业出版社, 2016. [2] 丁怡, 唐海燕, 刘兴坡, 等.不同类型人工湿地在污水脱氮中的研究进展[J]. 工业水处理,2019,39(7):1-3. doi: 10.11894/iwt.2018-0670DING Y, TANG H Y, LIU X P, et al. Research progress in different kinds of constructed wetlands for nitrogen removal from wastewater[J]. Industrial Water Treatment,2019,39(7):1-3. doi: 10.11894/iwt.2018-0670 [3] 符东, 付馨烈, 王成端, 等.稳定表流-潜流组合人工湿地系统处理生活污水的研究[J]. 环境工程技术学报,2020,10(4):598-605. doi: 10.12153/j.issn.1674-991X.20190176FU D, FU X L, WANG C D, et al. Study on the treatment of domestic sewage by stable surface flow-subsurface flow combination constructed wetland[J]. Journal of Environmental Engineering Technology,2020,10(4):598-605. doi: 10.12153/j.issn.1674-991X.20190176 [4] 苗莹, 沈志强, 周岳溪, 等.功能分区型人工湿地处理养殖废水厌氧消化液的性能[J]. 环境科学研究,2016,29(7):1075-1082.MIAO Y, SHEN Z Q, ZHOU Y X, et al. Performance of a functional zoning constructed wetland for the treatment of digested swine wastewater[J]. Research of Environmental Sciences,2016,29(7):1075-1082. [5] 常军军, 吴苏青, 梁康, 等.复合垂直流人工湿地微生物特征对典型污水的响应差异[J]. 环境科学研究,2016,29(8):1200-1206.CHANG J J, WU S Q, LIANG K, et al. Responses of microbial features in integrated vertical-flow constructed wetlands (IVCWs) for treatment of two types of representative wastewater[J]. Research of Environmental Sciences,2016,29(8):1200-1206. [6] 赖长邈, 孟庆杰.人工湿地处理工业废水研究进展综述[J]. 环境科学导刊,2018,37(5):75-83.LAI C M, MENG Q J. Review on the progress of industrial wastewater treatment by constructed wetland[J]. Environmental Science Survey,2018,37(5):75-83. [7] 文汉卿, 史俊, 寻昊, 等.抗生素抗性基因在水环境中的分布、传播扩散与去除研究进展[J]. 应用生态学报,2015,26(2):625-635.WEN H Q, SHI J, XUN H, et al. Distribution, dissemination and removal of antibiotic resistant genes (ARGs) in the aquatic environment[J]. Chinese Journal of Applied Ecology,2015,26(2):625-635. [8] 王帅, 高红杰, 宋永会, 等.潮汐流人工湿地净化城市河水中试研究[J]. 环境工程技术学报,2013,3(4):298-304. doi: 10.3969/j.issn.1674-991X.2013.04.047WANG S, GAO H J, SONG Y H, et al. Pilot study on purification of urban river water by using tidal flow constructed wetland[J]. Journal of Environmental Engineering Technology,2013,3(4):298-304. doi: 10.3969/j.issn.1674-991X.2013.04.047 [9] 杨棠武, 熊依依, 忻飞, 等.城镇黑臭河道治理: 多水塘活水链人工湿地的应用[J]. 湿地科学与管理,2021,17(1):51-55. doi: 10.3969/j.issn.1673-3290.2021.01.11YANG T W, XIONG Y Y, XIN F, et al. Treatment of black-odor river in towns: application of waterharmonica fresh water chain constructed wetland[J]. Wetland Science & Management,2021,17(1):51-55. doi: 10.3969/j.issn.1673-3290.2021.01.11 [10] 刘利, 邢芳芳, 赵文博, 等.水力负荷与水流方式对新型复合垂直流人工湿地净化效果的影响[J]. 环境工程技术学报,2021,11(1):82-90. doi: 10.12153/j.issn.1674-991X.20200024LIU L, XING F F, ZHAO W B, et al. Effects of hydraulic load and flow mode on the removal of pollutants in new-type integrated vertical flow constructed wetland[J]. Journal of Environmental Engineering Technology,2021,11(1):82-90. doi: 10.12153/j.issn.1674-991X.20200024 [11] KATAKI S, CHATTERJEE S, VAIRALE M G, et al. Constructed wetland, an eco-technology for wastewater treatment: a review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate)[J]. Journal of Environmental Management,2021,283:111986. doi: 10.1016/j.jenvman.2021.111986 [12] MANDER Ü, LÕHMUS K, TEITER S, et al. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands[J]. Science of the Total Environment,2008,404(2/3):343-353. [13] 刘硕, 王宝贞, 王琳, 等. 塘-湿地复合生态系统处理石油化工废水的效能[J]. 中国环境科学, 2006, 26(增刊1): 27-31.LIU S, WANG B Z, WANG L, et al. Efficacy of pond-wetland combined eco-system treating petrochemical wastewater[J]. China Environmental Science, 2006, 26(Suppl 1): 27-31. [14] 郝明旭, 霍莉莉, 吴珊珊.人工湿地植物水体净化效能研究进展[J]. 环境工程,2017,35(8):5-10.HAO M X, HUO L L, WU S S. Research progress on water purification of plants in constructed wetland[J]. Environmental Engineering,2017,35(8):5-10. [15] 陈小运, 胡友彪, 郑永红, 等.6种水生植物及其组合对模拟污水中磷的净化效果[J]. 水土保持通报,2020,40(1):99-107.CHEN X Y, HU Y B, ZHENG Y H, et al. Purification effects of six aquatic plants and their combinations on phosphorus in simulated sewage[J]. Bulletin of Soil and Water Conservation,2020,40(1):99-107. [16] 洪瑜, 王英, 王芳, 等.不同水生植物组合对稻田退水的氮磷净化效果[J]. 环境科学与技术,2020,43(3):110-115.HONG Y, WANG Y, WANG F, et al. Purification effect of nitrogen and phosphorus in the return flow of rice paddy by different hydrophyte combinations[J]. Environmental Science & Technology,2020,43(3):110-115. [17] REDDY K R, de BUSK W F. Nutrient removal potential of selected aquatic macrophytes[J]. Journal of Environmental Quality,1985,14(4):459-462. [18] 奉小忧, 宋永会, 曾清如, 等.不同植物人工湿地净化效果及基质微生物状况差异分析[J]. 环境科学研究,2011,24(9):1035-1041.FENG X Y, SONG Y H, ZENG Q R, et al. Purification effects and differences in substrate microorganism status in constructed wetlands vegetated with different plants[J]. Research of Environmental Sciences,2011,24(9):1035-1041. [19] 李盈盈, 邢晓伟.人工湿地植物配置的技术与应用[J]. 安徽农学通报,2007,13(15):49-50. doi: 10.3969/j.issn.1007-7731.2007.15.027 [20] 李洁, 崔丽娟, 李伟, 等.兼顾景观功能的人工湿地植物配置模式探讨[J]. 湿地科学与管理,2013,9(1):10-14. doi: 10.3969/j.issn.1673-3290.2013.01.03LI J, CUI L J, LI W, et al. Models of deployment of wetland plants in constructed wetland considering landscaping function[J]. Wetland Science & Management,2013,9(1):10-14. doi: 10.3969/j.issn.1673-3290.2013.01.03 [21] 陶正凯, 荆肇乾, 陈蕾, 等.基于胁迫影响的人工湿地植物筛选研究进展[J]. 生态科学,2019,38(6):184-189.TAO Z K, JING Z Q, CHEN L, et al. Research progress on the selection of artificial wetland plants based on stress influencing factors[J]. Ecological Science,2019,38(6):184-189. [22] 崔丽娟, 李伟, 张曼胤, 等.不同湿地植物及其组合对污染物的净化效果比较[J]. 生态科学,2011,30(3):327-333. doi: 10.3969/j.issn.1008-8873.2011.03.018CUI L J, LI W, ZHANG M Y, et al. A comparison of pollutant purification effectiveness of different wetland plants and their combinations[J]. Ecological Science,2011,30(3):327-333. doi: 10.3969/j.issn.1008-8873.2011.03.018 [23] 陈金发, 赵磊, 宋大刚, 等.人工湿地植物对畜禽废水的净化效果及生理特性变化[J]. 水处理技术,2015,41(2):20-26.CHEN J F, ZHAO L, SONG D G, et al. Performance of artificial wetland plants on livestock wastewater purification and changes of their physiological characteristics[J]. Technology of Water Treatment,2015,41(2):20-26. [24] 孙映波, 梅瑜, 操君喜, 等. 不同水生植物配置对河涌污水的净化效果[J]. 生态环境学报, 2011, 20(增刊1): 1123-1126.SUN Y B, MEI Y, CAO J X, et al. The purification effect of different aquaticplant configurations on rivulet sewage[J]. Ecology and Environmental Sciences, 2011, 20(Suppl 1): 1123-1126. [25] 韩潇源, 宋志文, 李培英.高效净化氮磷污水的湿地水生植物筛选与组合[J]. 湖泊科学,2008,20(6):741-747. doi: 10.3321/j.issn:1003-5427.2008.06.007HAN X Y, SONG Z W, LI P Y. Selection and assembly of macrophyte species in constructed wetland for purification of N and P in wastewater[J]. Journal of Lake Sciences,2008,20(6):741-747. doi: 10.3321/j.issn:1003-5427.2008.06.007 [26] 苗金, 原海燕, 黄苏珍.10种水生观赏植物对不同富营养化水体的净化效果研究[J]. 水土保持学报,2015,29(2):60-64.MIAO J, YUAN H Y, HUANG S Z. Study on the purification of ten species of ornamental plants for different eutrophic water[J]. Journal of Soil and Water Conservation,2015,29(2):60-64. [27] 李龙山, 倪细炉, 李志刚, 等.5种湿地植物生理生长特性变化及其对污水净化效果的研究[J]. 农业环境科学学报,2013,32(8):1625-1632. doi: 10.11654/jaes.2013.08.020LI L S, NI X L, LI Z G, et al. Growth characteristics and sewage cleaning effect of five wetland plants[J]. Journal of Agro-Environment Science,2013,32(8):1625-1632. doi: 10.11654/jaes.2013.08.020 [28] 杜甫义, 阿琼, 董凡超, 等.西藏地区不同湿地植物配置对污水的净化效果[J]. 环境工程,2017,35(1):26-30.DU F Y, A Q, DONG F C, et al. Purification effect of different wetland plant configuration on sewage in Tibet[J]. Environmental Engineering,2017,35(1):26-30. [29] 彭婉婷, 邹琳, 段维波, 等.多种湿地植物组合对污水中氮和磷的去除效果[J]. 环境科学学报,2012,32(3):612-617.PENG W T, ZOU L, DUAN W B, et al. Efficiency of nitrogen and phosphorus removal from sewage by various combinations of wetland plants[J]. Acta Scientiae Circumstantiae,2012,32(3):612-617. [30] 张爱娣, 郑仰雄, 黄东兵.5种湿地植物对含盐生活污水的净化效果及其生理响应[J]. 江苏农业学报,2020,36(2):384-390. doi: 10.3969/j.issn.1000-4440.2020.02.018ZHANG A D, ZHENG Y X, HUANG D B. Purifying effects and physiological response of five wetland plants to saline domestic sewage[J]. Jiangsu Journal of Agricultural Sciences,2020,36(2):384-390. doi: 10.3969/j.issn.1000-4440.2020.02.018 [31] 李婷, 杨恒, 潘远智, 等.五种湿地植物组合对城市污水净化效果的模拟研究[J]. 黑龙江农业科学,2019(1):107-113.LI T, YANG H, PAN Y Z, et al. Simulate study on the purification effect of urban sewage by five combinations of wetland plants[J]. Heilongjiang Agricultural Sciences,2019(1):107-113. [32] 王辰, 王英伟. 中国湿地植物图鉴[M]. 重庆: 重庆大学出版社, 2011. [33] 周厚高. 水体植物景观[M]. 南京: 江苏凤凰科学技术出版社, 2019. [34] 张翔, 李子富, 周晓琴, 等.我国人工湿地标准中潜流湿地设计分析[J]. 中国给水排水,2020,36(18):24-31.ZHANG X, LI Z F, ZHOU X Q, et al. Design analysis of subsurface flow wetland in constructed wetland standards in China[J]. China Water & Wastewater,2020,36(18):24-31. [35] 俞波, 黄荣振, 何圣兵. 不同植物类型表面流湿地处理低污染河水的效能研究[C]//《环境工程》2018年全国学术年会论文集. 北京: 《环境工程》编委会, 2018: 301-304. [36] 梁雪, 贺锋, 徐栋, 等.人工湿地植物的功能与选择[J]. 水生态学杂志,2012,33(1):131-138.LIANG X, HE F, XU D, et al. Plant function and selection for constructed wetlands[J]. Journal of Hydroecology,2012,33(1):131-138. [37] 徐景涛, 赵聪聪, 徐晓丽, 等.冬季人工湿地工程对三氯生的去除效果[J]. 环境科学研究,2016,29(8):1207-1212.XU J T, ZHAO C C, XU X L, et al. Triclosan removal in large-scale constructed wetlands (CWs) in winter[J]. Research of Environmental Sciences,2016,29(8):1207-1212. [38] 李冰伦, 王文杰, 胡远满, 等.基于景观生态学的湿地公园空间优化配置方案: 以北京琉璃河湿地公园为例[J]. 环境工程技术学报,2020,10(1):25-31. doi: 10.12153/j.issn.1674-991X.20190122LI B L, WANG W J, HU Y M, et al. Spatial optimization and configuration scheme of wetland park based on landscape ecology: a case study of Liuli River Wetland Park in Beijing[J]. Journal of Environmental Engineering Technology,2020,10(1):25-31. doi: 10.12153/j.issn.1674-991X.20190122 [39] 皇甫嘉弘. 宁波社区公园水生植物水质净化效益及景观优化研究[D]. 杭州: 浙江农林大学, 2021. [40] VYMAZAL J. Emergent plants used in free water surface constructed wetlands: a review[J]. Ecological Engineering,2013,61:582-592. doi: 10.1016/j.ecoleng.2013.06.023 [41] ZHANG T, XU D, HE F, et al. Application of constructed wetland for water pollution control in China during 1990-2010[J]. Ecological Engineering,2012,47:189-197. doi: 10.1016/j.ecoleng.2012.06.022 [42] PARDE D, PATWA A, SHUKLA A, et al. A review of constructed wetland on type, treatment and technology of wastewater[J]. Environmental Technology & Innovation,2021,21:101261. [43] ZHENG Y C, YANG D, DZAKPASU M, et al. Effects of plants competition on critical bacteria selection and pollutants dynamics in a long-term polyculture constructed wetland[J]. Bioresource Technology,2020,316:123927. doi: 10.1016/j.biortech.2020.123927 [44] MARCHAND L, MENCH M, JACOB D L, et al. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review[J]. Environmental Pollution,2010,158(12):3447-3461. ◇ doi: 10.1016/j.envpol.2010.08.018