Experience, implications and future policy development directions for the elimination of aging vehicles in Beijing, China
-
摘要:
梳理2011年以来北京市老旧汽车淘汰相关政策和控制措施,采用排放因子法核算机动车污染减排量和环境效益,分析了政策作用效果。结合当前北京市机动车污染排放状况,以及空气质量改善和碳减排需要,提出未来老旧汽车淘汰政策发展方向。结果表明:通过实施北京市老旧汽车淘汰政策,加速了北京市机动车车辆结构调整和优化,在机动车数量持续增加的情况下实现了其大气污染物排放量的减少,取得良好的环境效益。老旧汽车淘汰和补贴政策能够根据机动车结构和排放变化情况,设置差异化和细分的补贴力度,不断提高政策的导向性和精准度。面向未来政策方向,应进一步加强基于不同车型排放差异的更新方案的制定,面向重点用车单位,结合北京市重点碳排放单位管理,推进车辆结构调整和新能源化发展,从而实现机动车二氧化碳和大气污染物协同控制的目标。
Abstract:By sorting out the relevant policies and control measures for the elimination of old vehicles in Beijing since 2011, the emission factor method was used to calculate the emission reduction and environmental benefits of motor vehicle pollution, the role of the policies was analyzed. Combined with the current emission situation of motor vehicle pollution in Beijing, as well as the needs of air quality improvement and carbon emission reduction, the development directions of the policies for the elimination of old vehicles in the future were put forward. The results showed that the implementation of the elimination policies of aging vehicles in Beijing had accelerated the adjustment and optimization of Beijing's motor vehicle structure, the reduction of air pollutant emissions was achieved even with the continuous increasing number of motor vehicles, and good environmental benefits had been achieved. Based on the variation of motor vehicles structure and emissions, the elimination and subsidy policies of aging vehicles could set differentiated and subdivided subsidies to continuously improve the directions and accuracy of the policies. For the future policy directions, it was necessary to further strengthen the formulation of renewal plans based on the emission differences of different vehicle models. For the key vehicle units, it was useful to promote the adjustment of motor vehicle structure and the development of new energy in combination with the management of key carbon emission units in Beijing. On the basis of these policies, the coordinated control of carbon dioxide and air pollutants emitted from vehicles would be achieved.
-
Key words:
- aging vehicle /
- air pollution /
- environmental benefits /
- air quality /
- policy implication
-
表 1 2011年以来北京市老旧汽车淘汰更新方案
Table 1. Elimination and renewal policies for aging vehicles in Beijing since 2011
年份 政策文件 对象 时限 补助标准 2011 《关于进一步促进本市老旧
机动车淘汰更新方案》指使用6年及以上且未达到现行国家第四阶段排放标准的载客汽车、载货汽车和专项作业车(不含黄标车) 2011年8月1日—
2012年12月31日报废或转出最高为
0.25万~1.65万元2012 《关于进一步促进本市老旧机动车淘汰更新方案
(2013—2014年)》指使用6年及以上的载客汽车、载货汽车和专项作业车(不含黄标车) 2013年1月1日—
2014年12月31日报废或转出最高为
0.25万~1.65万元2015 《北京市进一步促进老旧机动车淘汰更新方案
(2015—2016年)》登记注册使用6年及以上的载客汽车、载货汽车和专项作业车(不含出租汽车、摩托车、低速载货汽车、黄标车) 2015年1月1日—
2016年12月31日报废最高为0.3万~2.15万元 2016 《北京市促进高排放老旧
机动车淘汰更新方案》指在本市登记注册的国一和国二排放标准轻型汽油车(燃料种类为汽油的小型、微型客车及轻型、微型货车) 2016年12月1日—
2017年12月31日报废最高为0.3万~1.2万元 2017 《北京市促进高排放老旧
柴油货运车淘汰方案》2013年7月1日(不含)以前在本市注册登记的柴油货运车(包括轻型载货柴油车、中型载货柴油车和重型载货、重型牵引柴油车,不含黄标车) 2017年9月21日—
2019年10月31日报废最高为0.42万~10万元,转出减半 2020 《北京市进一步促进高排放老旧机动车淘汰更新方案
(2020—2021年)》本市登记注册的国三排放标准汽油载客
汽车和汽油载货汽车2020年4月1日—
2021年12月31日报废最高为0.4万~2.2万元,
转出减半 -
[1] 黄志辉, 郝春晓, 王军方, 等.机动车污染物排放量分析: 《中国机动车环境管理年报(2017)》第Ⅱ部分[J]. 环境保护,2017,45(13):42-47. [2] 范武波, 陈军辉, 马冬, 等.2010—2019年成都市机动车排污特征分析及防控措施减排效果评估[J]. 环境工程学报,2021,15(2):657-668. doi: 10.12030/j.cjee.202008009FAN W B, CHEN J H, MA D, et al. Characteristics of emissions from vehicles in Chengdu from 2010 to 2019 and evaluation of effectiveness of prevention and control measures[J]. Chinese Journal of Environmental Engineering,2021,15(2):657-668. doi: 10.12030/j.cjee.202008009 [3] ZHANG S J, WU Y, ZHAO B, et al. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region[J]. Journal of Environmental Sciences,2017,51:75-87. doi: 10.1016/j.jes.2016.06.038 [4] 严兆明.道路运输结构优化对促进运输经济发展的路径探讨[J]. 中国商论,2020(24):43-44. [5] 李云燕, 宋伊迪.碳中和目标下的北京城市道路移动源CO2和大气污染物协同减排效应研究[J]. 中国环境管理,2021,13(3):113-120.LI Y Y, SONG Y D. Study on the synergetic emission reduction effect of CO2 and air pollutants from the mobile source of urban roads in Beijing under the target of carbon neutralization[J]. Chinese Journal of Environmental Management,2021,13(3):113-120. [6] 邬春涛, 易永平, 费桂军.地方机动车环境管理现状及对策建议: 以宁波市为例[J]. 环境保护,2020,48(18):61-64.WU C T, YI Y P, FEI G J. Current situation and countermeasures of motor vehicle environmental management in Ningbo[J]. Environmental Protection,2020,48(18):61-64. [7] GU X K, YIN S S, LU X, et al. Recent development of a refined multiple air pollutant emission inventory of vehicles in the Central Plains of China[J]. Journal of Environmental Sciences,2019,84:80-96. doi: 10.1016/j.jes.2019.04.010 [8] 王燕军, 何巍楠, 宋国华, 等.北京市2017年典型日机动车动态排放特征研究[J]. 环境科学研究,2021,34(1):141-148.WANG Y J, HE W N, SONG G H, et al. Vehicular dynamic emission characteristics of typical days in Beijing in 2017[J]. Research of Environmental Sciences,2021,34(1):141-148. [9] 李敏辉, 廖程浩, 常树诚, 等.大气污染排放格局优化方法及案例[J]. 环境科学,2021,42(4):1679-1687.LI M H, LIAO C H, CHANG S C, et al. Optimization method and case study of air pollution emission spatial pattern[J]. Environmental Science,2021,42(4):1679-1687. [10] 武文琪, 张凯山.区域气象条件和减排对空气质量改善的贡献评估[J]. 环境科学,2021,42(2):523-533.WU W Q, ZHANG K S. Contributions of emissions reduction and regional meteorological conditions to air quality improvement[J]. Environmental Science,2021,42(2):523-533. [11] 孙金龙.深入打好污染防治攻坚战 持续改善环境质量[J]. 环境保护,2021,49(1):8-10.SUN J L. Endeavor to fight the battle of pollution prevention and control and make continuous improvements to the environment[J]. Environmental Protection,2021,49(1):8-10. [12] ZHANG S J, WU Y, WU X M, et al. Historic and future trends of vehicle emissions in Beijing, 1998-2020: a policy assessment for the most stringent vehicle emission control program in China[J]. Atmospheric Environment,2014,89:216-229. doi: 10.1016/j.atmosenv.2013.12.002 [13] 闫东杰, 丁毅飞, 玉亚, 等.西安市人为源一次PM2.5排放清单及减排潜力研究[J]. 环境科学研究,2019,32(5):813-820.YAN D J, DING Y F, YU Y, et al. Inventory and reduction potential of anthropogenic PM2.5 emission in Xi'an City[J]. Research of Environmental Sciences,2019,32(5):813-820. [14] GAO C K, GAO C B, SONG K H, et al. Vehicle emissions inventory in high spatial-temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis[J]. Process Safety and Environmental Protection,2020,138:236-245. doi: 10.1016/j.psep.2020.03.027 [15] LIU Y H, LIAO W Y, LI L, et al. Vehicle emission trends in China's Guangdong Province from 1994 to 2014[J]. Science of the Total Environment,2017,586:512-521. doi: 10.1016/j.scitotenv.2017.01.215 [16] 赵雪艳, 王静, 祝胜男, 等.沈阳市国三和国四排放标准不同车型柴油车PM2.5和PM10排放因子及碳组分源谱[J]. 环境科学,2019,40(10):4330-4336.ZHAO X Y, WANG J, ZHU S N, et al. Emission characteristics of exhaust PM and its carbonaceous components from China Ⅲ to China Ⅳ diesel vehicles in Shenyang[J]. Environmental Science,2019,40(10):4330-4336. [17] 段乐君, 袁自冰, 沙青娥, 等.不同排放标准下机动车挥发性有机化合物排放特征趋势研究[J]. 环境科学学报,2021,41(4):1239-1249.DUAN L J, YUAN Z B, SHA Q E, et al. Investigation on the trend of emission characteristics of volatile organic compounds from motor vehicle exhaust under different emission standards[J]. Acta Scientiae Circumstantiae,2021,41(4):1239-1249. [18] 北京市交通发展研究院. 2021年北京交通发展年度报告[R]. 北京: 北京市交通发展研究院, 2021. [19] 沈岩, 武彤冉, 闫静, 等.基于COPERT模型北京市机动车大气污染物和二氧化碳排放研究[J]. 环境工程技术学报,2021,11(6):1075-1082. doi: 10.12153/j.issn.1674-991X.20210289SHEN Y, WU T R, YAN J, et al. Investigation on air pollutants and carbon dioxide emissions from motor vehicles in Beijing based on COPERT model[J]. Journal of Environmental Engineering Technology,2021,11(6):1075-1082. doi: 10.12153/j.issn.1674-991X.20210289 [20] 曹西子, 刘杰, 许康利, 等.机动车低排放区政策环境效益分析及经验启示[J]. 环境工程技术学报,2020,10(6):957-963. doi: 10.12153/j.issn.1674-991X.20200018CAO X Z, LIU J, XU K L, et al. Environmental benefit analysis and policy implications of motor vehicles low-emission zones[J]. Journal of Environmental Engineering Technology,2020,10(6):957-963. doi: 10.12153/j.issn.1674-991X.20200018 [21] 樊守彬, 田灵娣, 张东旭, 等.基于实际道路交通流信息的北京市机动车排放特征[J]. 环境科学,2015,36(8):2750-2757.FAN S B, TIAN L D, ZHANG D X, et al. Emission characteristics of vehicle exhaust in Beijing based on actual traffic flow information[J]. Environmental Science,2015,36(8):2750-2757. □