留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹刨花-铁耦合体系对低碳氮比污水的脱氮性能

郑力 李志勇 黄剑 程晓夏

郑力,李志勇,黄剑,等.竹刨花-铁耦合体系对低碳氮比污水的脱氮性能[J].环境工程技术学报,2023,13(1):214-221 doi: 10.12153/j.issn.1674-991X.20210689
引用本文: 郑力,李志勇,黄剑,等.竹刨花-铁耦合体系对低碳氮比污水的脱氮性能[J].环境工程技术学报,2023,13(1):214-221 doi: 10.12153/j.issn.1674-991X.20210689
ZHENG L,LI Z Y,HUANG J,et al.Denitrification performance of bamboo shavings-iron coupled system for low C/N ration wastewater[J].Journal of Environmental Engineering Technology,2023,13(1):214-221 doi: 10.12153/j.issn.1674-991X.20210689
Citation: ZHENG L,LI Z Y,HUANG J,et al.Denitrification performance of bamboo shavings-iron coupled system for low C/N ration wastewater[J].Journal of Environmental Engineering Technology,2023,13(1):214-221 doi: 10.12153/j.issn.1674-991X.20210689

竹刨花-铁耦合体系对低碳氮比污水的脱氮性能

doi: 10.12153/j.issn.1674-991X.20210689
基金项目: 湖北省科技发展专项(KJFZ2019015,42000022205T000000139)
详细信息
    作者简介:

    郑力(1991—),女,工程师,硕士,主要从事水污染治理研究,13986044659@163.com

  • 中图分类号: X703

Denitrification performance of bamboo shavings-iron coupled system for low C/N ration wastewater

  • 摘要:

    针对低碳氮比污水中总氮(TN)去除率低的问题,以纤维状竹刨花为固体碳源,单质铁粉为铁源,利用二者的耦合作用进行脱氮。通过静态反硝化试验考察不同铁碳质量比(Fe/C)对NO3 -N去除效果的影响,确定耦合体系适宜的Fe/C;在此基础上,设置单纯竹刨花对照组(1#试验组)与耦合填料试验组(2#试验组)动态反硝化试验,研究其脱氮性能。结果表明:静态试验中,加入铁粉的耦合体系NO3 -N去除率均高于单纯竹刨花体系,但当Fe/C大于 0.125∶1时,NO3 -N去除率提升不显著,综合考虑反硝化效果与成本,确定动态试验耦合填料Fe/C为 0.125∶1。动态试验中,进水总有机碳浓度低于2 mg/L,TN浓度为(40.93±2.04) mg/L,水力停留时间为18 h时,1#和2#试验组运行约10 d后脱氮效能趋于稳定。12~81 d,2组出水总有机碳浓度均较低,1#、2#试验组TN平均去除率分别为33%和76%,2#试验组的TN去除率相比1#试验组提高了129%;两组均有一定的NO2 -N积累,但2#试验组的NO2 -N浓度相比1#试验组低约47%;2#试验组出水总铁平均浓度低于GB 3838—2002《地表水环境质量标准》限值,未出现铁过量释放与NH3-N明显积累。总之,竹刨花-铁耦合体系脱氮效能优异,脱氮过程二次影响低。我国竹资源丰富,铁来源广泛,竹刨花-铁耦合体系可用于低碳氮比生活污水中TN的去除。

     

  • 图  1  动态试验装置示意

    Figure  1.  Schematic diagram of the dynamic test units

    图  2  竹刨花释碳、氮特征

    Figure  2.  Carbon and nitrogen release characteristics of bamboo shavings

    图  3  Fe/C对竹刨花体系反硝化脱氮效果的影响

    Figure  3.  Effect of Fe/C ratio on denitrification of bamboo shavings system

    图  4  1#、2#试验组进出水TOC浓度与COD变化

    Figure  4.  Variation curves of TOC concentration and COD in the inlet and outlet water of 1# and 2#

    图  5  1#、2#试验组运行过程中TN去除效果变化

    Figure  5.  Changes in total nitrogen removal effect during the operation of 1# and 2#

    图  6  1#、2#试验组运行过程中积累的NO2 -N与NH3-N浓度变化

    Figure  6.  Varaition of concentration of nitrate-nitrogen and ammonia nitrogen accumulated during the operation of 1# and 2#

    图  7  2#试验组运行过程中出水总铁浓度变化

    Figure  7.  Variation of total iron concentration in effluent during the operation of 2#

    表  1  微量元素溶液中物质组成

    Table  1.   Trace element composition in trace element solution mg/L 

    ZnSO4·7H2OMgSO4·7H2OKICoCl2·6H2OCaCl2MnCl2
    1202030303020
    下载: 导出CSV
  • [1] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management,2019,246:832-839.
    [2] LIU D Z, LI J W, LI C W, et al. Poly(butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system[J]. Scientific Reports,2018,8:3289. doi: 10.1038/s41598-018-21702-5
    [3] WANG T, WANG H Y, CHANG Y, et al. Enhanced nutrients removal using reeds straw as carbon source in a laboratory scale constructed wetland[J]. International Journal of Environmental Research and Public Health,2018,15(6):1081. doi: 10.3390/ijerph15061081
    [4] YU L J, CHEN T, XU Y H. Effect of corn cobs as external carbon sources on nitrogen removal in constructed wetlands treating micro-polluted river water[J]. Water Science & Technology,2019,79(9):1639-1647. doi: 10.2166/wst.2019.156
    [5] 凌宇, 赵远哲, 王海燕, 等.HRT对A/O-BF处理低碳氮比农村生活污水脱氮的影响[J]. 环境科学研究,2021,34(4):927-935. doi: 10.13198/j.issn.1001-6929.2020.12.12

    LING Y, ZHAO Y Z, WANG H Y, et al. Effects of HRT on A/O-BF nitrogen removal of low C/N rural domestic sewage[J]. Research of Environmental Sciences,2021,34(4):927-935. doi: 10.13198/j.issn.1001-6929.2020.12.12
    [6] 郑冰冰, 吴怡伟, 李云辉, 等.不同碳氮比对海水养殖废水脱氮效果的影响[J]. 环境科学研究,2020,33(8):1848-1856. doi: 10.13198/j.issn.1001-6929.2020.03.02

    ZHENG B B, WU Y W, LI Y H, et al. Effect of different C/N ratio on nitrogen removal of mariculture wastewater[J]. Research of Environmental Sciences,2020,33(8):1848-1856. doi: 10.13198/j.issn.1001-6929.2020.03.02
    [7] ZHOU B B, DUAN J J, XUE L H, et al. Effect of plant-based carbon source supplements on denitrification of synthetic wastewater: focus on the microbiology[J]. Environmental Science and Pollution Research International,2019,26(24):24683-24694. doi: 10.1007/s11356-019-05454-x
    [8] 张恒亮, 朱铁群, 王海燕, 等.芦苇碳源投加量对表面流人工湿地中试系统强化脱氮启动的影响[J]. 环境工程技术学报,2017,7(3):332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047

    ZHANG H L, ZHU T Q, WANG H Y, et al. Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland[J]. Journal of Environmental Engineering Technology,2017,7(3):332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047
    [9] LI Y Y, WANG S, LI Y, et al. Corn straw as a solid carbon source for the treatment of agricultural drainage water in horizontal subsurface flow constructed wetlands[J]. Water,2018,10(4):511. doi: 10.3390/w10040511
    [10] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure[J]. Bioresource Technology,2018,267:416-425. doi: 10.1016/j.biortech.2018.07.029
    [11] LING Y, YAN G K, WANG H Y, et al. Release mechanism, secondary pollutants and denitrification performance comparison of six kinds of agricultural wastes as solid carbon sources for nitrate removal[J]. International Journal of Environmental Research and Public Health,2021,18(3):1232. doi: 10.3390/ijerph18031232
    [12] GUAN X X, JI G X, XU S Y, et al. Selection of agricultural straws as sustained-release carbon source for denitrification in a drawer-type biological filter[J]. Water, Air, & Soil Pollution,2019,230(1):1-11.
    [13] SÁNCHEZ M P, SULBARÁN-RANGEL B C, TEJEDA A, et al. Evaluation of three lignocellulosic wastes as a source of biodegradable carbon for denitrification in treatment wetlands[J]. International Journal of Environmental Science and Technology,2020,17(12):4679-4692. doi: 10.1007/s13762-020-02815-9
    [14] 辜夕容, 邓雪梅, 刘颖旎, 等.竹废弃物的资源化利用研究进展[J]. 农业工程学报,2016,32(1):236-242. doi: 10.11975/j.issn.1002-6819.2016.01.033

    GU X R, DENG X M, LIU Y N, et al. Review on comprehensive utilization of bamboo residues[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(1):236-242. doi: 10.11975/j.issn.1002-6819.2016.01.033
    [15] BUCCO S, PADOIN N, NETTO W S, et al. Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source[J]. Bioprocess and Biosystems Engineering,2014,37(10):2009-2017. doi: 10.1007/s00449-014-1176-7
    [16] WANG Y M. Bamboo as solid carbon source for de-nitrification[J]. Advanced Materials Research,2013,807/808/809:1330-1335.
    [17] ZHANG Y B, FENG Y H, YU Q L, et al. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron[J]. Bioresource Technology,2014,159:297-304. doi: 10.1016/j.biortech.2014.02.114
    [18] 杨燕, 朱静平.添加零价铁的反硝化系统中发生的主要反应[J]. 工业水处理,2021,41(3):77-82.

    YANG Y, ZHU J P. Main reactions in denitrification system with zero valent iron addition[J]. Industrial Water Treatment,2021,41(3):77-82.
    [19] ZHANG F F, MA C J, HUANG X F, et al. Research progress in solid carbon source-based denitrification technologies for different target water bodies[J]. Science of the Total Environment,2021,782:146669. doi: 10.1016/j.scitotenv.2021.146669
    [20] ZHANG J M, FENG C P, HONG S Q, et al. Behavior of solid carbon sources for biological[J]. Water Science & Technology,2012,65(9):1696-1704.
    [21] 杨清培, 欧阳明, 杨光耀, 等.竹子生态化学计量学研究: 从生物学基础到竹林培育学应用[J]. 植物生态学报,2016,40(3):264-278. doi: 10.17521/cjpe.2015.0298

    YANG Q P, OUYANG M, YANG G Y, et al. Research on ecological stoichiometry in bamboos: from biological basis to applications in silviculture of bamboo forests[J]. Chinese Journal of Plant Ecology,2016,40(3):264-278. doi: 10.17521/cjpe.2015.0298
    [22] 张红爱, 黄宁辉, 莫家勇, 等.广东毛竹碳含量测定分析[J]. 林业与环境科学,2017,33(3):20-23. doi: 10.3969/j.issn.1006-4427.2017.03.004

    ZHANG H A, HUANG N H, MO J Y, et al. Determination and analysis of carbon content of Phyllostachys pubescens in Guangdong Province[J]. Forestry and Environmental Science,2017,33(3):20-23. doi: 10.3969/j.issn.1006-4427.2017.03.004
    [23] 邵媛媛. 高效脱氮菌强化人工湿地处理村镇生活污水工艺研究[D]. 济南: 山东大学, 2014.
    [24] 熊家晴, 孙建民, 郑于聪, 等.植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理,2018,38(9):41-44. doi: 10.11894/1005-829x.2018.38(9).041

    XIONG J Q, SUN J M, ZHENG Y C, et al. Influences of solid plant carbon source addition on the denitrification effect in constructed wetland[J]. Industrial Water Treatment,2018,38(9):41-44. doi: 10.11894/1005-829x.2018.38(9).041
    [25] 王玥, 秦帆, 唐燕华, 等.农业废弃物作为反硝化脱氮外加碳源的研究[J]. 林业工程学报,2019,4(5):146-151.

    WANG Y, QIN F, TANG Y H, et al. Agricultural wastes as additional carbon sources for denitrification[J]. Journal of Forestry Engineering,2019,4(5):146-151.
    [26] SUN G P, WAN J F, SUN Y C, et al. Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers[J]. Chemosphere,2019,237:124520. doi: 10.1016/j.chemosphere.2019.124520
    [27] HARTZ T, SMITH R, CAHN M, et al. Wood chip denitrification bioreactors can reduce nitrate in tile drainage[J]. California Agriculture,2017,71(1):41-47. doi: 10.3733/ca.2017a0007
    [28] YIN W Z, WU J H, LI P, et al. Reductive transformation of pentachloronitrobenzene by zero-valent iron and mixed anaerobic culture[J]. Chemical Engineering Journal,2012,210:309-315. doi: 10.1016/j.cej.2012.09.003
    [29] 王海燕, 赵远哲, 王文富, 等.人工湿地脱氮影响因素及强化措施研究进展[J]. 环境工程技术学报,2020,10(4):585-597. doi: 10.12153/j.issn.1674-991X.20190150

    WANG H Y, ZHAO Y Z, WANG W F, et al. A review of influencing factors and enhanced measures for nitrogen removal of constructed wetlands[J]. Journal of Environmental Engineering Technology,2020,10(4):585-597. doi: 10.12153/j.issn.1674-991X.20190150
    [30] 邵留, 徐祖信, 金伟, 等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J]. 环境科学,2009,30(5):1414-1419. doi: 10.3321/j.issn:0250-3301.2009.05.027

    SHAO L, XU Z X, JIN W, et al. Nitrate removal from wastewater using rice straw as carbon source and biofilm carrier[J]. Environmental Science,2009,30(5):1414-1419. doi: 10.3321/j.issn:0250-3301.2009.05.027
    [31] 王子杰, 王郑, 林子增, 等.反硝化生物滤池在污水处理中的应用研究进展[J]. 应用化工,2018,47(8):1727-1731. doi: 10.3969/j.issn.1671-3206.2018.08.040

    WANG Z J, WANG Z, LIN Z Z, et al. Research progress on application of denitrification biological filter in sewage treatment[J]. Applied Chemical Industry,2018,47(8):1727-1731. doi: 10.3969/j.issn.1671-3206.2018.08.040
    [32] 孙雅丽, 张国臣, 阎中, 等.以腐朽木为碳源去除废水中硝酸盐氮的研究[J]. 环境科学,2010,31(6):1494-1498.

    SUN Y L, ZHANG G C, YAN Z, et al. Removing nitrate-nitrogen from wastewater using rotten wood as carbon source[J]. Environmental Science,2010,31(6):1494-1498.
    [33] 李斌, 郝瑞霞.固体纤维素类废物作为反硝化碳源滤料的比选[J]. 环境科学,2013,34(4):1428-1434.

    LI B, HAO R X. Comparison and optimization of cellulose carbon source for denitrification filter[J]. Environmental Science,2013,34(4):1428-1434.
    [34] JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for high-rate nitrogen removal[J]. Environmental Science & Technology,2019,53(3):1258-1268.
    [35] 张雅君, 吕静静, 孙丽华, 等.不同硝酸盐浓度对再生水管网腐蚀状况的影响[J]. 腐蚀科学与防护技术,2018,30(3):259-265. doi: 10.11903/1002.6495.2017.229

    ZHANG Y J, LÜ J J, SUN L H, et al. Influence of nitrate concentration on corrosion of reclaimed water pipe network[J]. Corrosion Science and Protection Technology,2018,30(3):259-265. doi: 10.11903/1002.6495.2017.229
    [36] 曹晓敏, 李晨曦, 齐晗兵, 等.零价铁耦合厌氧微生物法在废水处理中的应用[J]. 化学通报,2021,84(4):365-371.

    CAO X M, LI C X, QI H B, et al. Application of zero-valent iron coupled anaerobic biological method in wastewater treatment[J]. Chemistry,2021,84(4):365-371.
    [37] ETIQUE M, JORAND F P A, ZEGEYE A, et al. Abiotic process for Fe(Ⅱ) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis)[J]. Environmental Science & Technology,2014,48(7):3742-3751.
    [38] WANG C, XU Y, HOU J, et al. Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: performance and potential mechanisms[J]. Science of the Total Environment,2019,689:1044-1053. doi: 10.1016/j.scitotenv.2019.06.488
    [39] ZHU L, GAO K T, JIN J, et al. Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system[J]. Environmental Science and Pollution Research International,2014,21(22):12747-12756. doi: 10.1007/s11356-014-3215-y
    [40] 李园怡, 李杰.Fe0-生物铁法中铁的微生物腐蚀机理研究进展[J]. 绿色科技,2019(8):50-52.

    LI Y Y, LI J. Research progress on microbial corrosion mechanism of iron in Fe0-biometric iron method[J]. Journal of Green Science and Technology,2019(8):50-52.
    [41] XU Y, WANG C, HOU J, et al. Application of zero valent iron coupling with biological process for wastewater treatment: a review[J]. Reviews in Environmental Science and Bio/Technology,2017,16(4):667-693. ◇ doi: 10.1007/s11157-017-9445-y
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  138
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15

目录

    /

    返回文章
    返回