Root distribution characteristics of green roof Sedum plants and their effects on saturated hydraulic conductivity
-
摘要:
为丰富我国绿色屋顶中景天属植物根系分布特征的研究及探讨根系特征参数与绿色屋顶基质层饱和导水率间的关系,选用景天属植物垂盆草、佛甲草种植于珍珠岩基质中,基质厚度为6、10、14 cm,结合武汉市降水特点对植物采用统一浇水制度进行培养,选取根长密度、根表面积密度、根体积密度来描述根系形态,并测定基质的饱和导水率;以无植物组为对照组,定量比较不同基质厚度下绿色屋顶景天属植物根系分布特征及其饱和导水率的变化差异。结果表明:1)景天属植物的根长密度、根表面积密度、根体积密度受珍珠岩基质厚度影响显著。6 cm基质中植物的总根长密度最大,这与基质中直径为0.2~0.4 mm根的根长密度占比大有关;14 cm基质中植物的总根表面积密度、根体积密度最大,这与基质中直径为1~2 mm根的根表面积密度、根体积密度占比大有关。2)景天属植物根系对珍珠岩基质饱和导水率的改变显著。相比无植物组,景天属植物根系的加入使得珍珠岩基质的饱和导水率改变了−98.95%~−95.15%,有植物组的饱和导水率远低于无植物组;而有植物组间,珍珠岩基质的饱和导水率与景天属植物直径为0.2~0.4 mm根的根长密度(P=0.050,R2=0.786)、根表面积密度(P=0.047,R2=0.818)、根体积密度(P=0.044,R2=0.824)呈显著正相关。
Abstract:In order to enrich the research on the distribution characteristics of the root system of Sedum plants in green roofs in China, and to explore the relationship between the root characteristic parameters and the saturated hydraulic conductivity of the green roof matrix layer, Sedum sarmentosum and Sedum lineare were planted in perlite substrate with a depth of 6, 10, and 14 cm. The plants were cultivated in a uniform watering system in accordance with the characteristics of rainfall in Wuhan. The root length density, root surface area density, root volume density were selected to describe the root morphology, and the saturated hydraulic conductivity of each group was measured. The group without plants was used as a control to quantitatively compare the root distribution characteristics of Sedum plants and the variation of saturated hydraulic conductivity under different substrate depths. The results showed that: 1) The root length density, root surface area density, and root volume density of Sedum plants were significantly affected by the depth of the perlite substrate. Under the same conditions, the root diameter of plants in the 6 cm substrate ranged from 0 to 0.8 mm, and the total root length density was the highest, which was mainly related to the roots with a diameter of 0.2 to 0.4 mm. The root diameter of plants in the 14 cm substrate ranged from 0 to 2 mm. The total root surface area density and root volume density were the largest, and their values were mainly related to the roots with a diameter of 1 to 2 mm. 2) Compared with the group without plants, the addition of Sedum roots changed the saturated hydraulic conductivity of the perlite substrate by −98.95% to −95.15%, and the saturated hydraulic conductivity of the plant group was much lower than that of the non-plant group. For the plant group, the saturated hydraulic conductivity had a significant positive correlation with the root length density (P=0.050, R2=0.786), root surface area density (P=0.047, R2=0.818), and root volume density (P=0.044, R2=0.824) of Sedum plants with a diameter of 0.2-0.4 mm. 3) The roots of Sedum plants significantly changed the saturated hydraulic conductivity of perlite substrate.
-
表 1 2种景天属植物的生物学特性[18]
Table 1. Biological characteristics of two Sedum plants
名称 生物学特性 垂盆草 多年生肉质草本,茎匍匐生长,长10~25 cm。叶全缘,3片轮生,倒披针形至长圆形。花淡黄色,
聚伞花序,花期5—7月佛甲草 多年生肉质草本,茎高10~20 cm,3叶轮生,少有4叶轮或对生,叶线形,黄绿色,先端钝尖,基部无柄,
有短距。花黄色,花期5—6月表 2 珍珠岩基质的理化性质
Table 2. Physical and chemical properties of perlite substrate
干密度/
(g/cm3)总孔隙
度/%最大持
水量/%有机质浓
度/(g/kg)碱解氮浓
度/(mg/L)速效磷浓
度/(mg/L)0.21±
0.0191.40±
0.0136.65±
1.3331.15±
2.7225.83±
1.1163.59±
2.60表 3 有无植物时不同厚度基质的饱和导水率
Table 3. Saturated hydraulic conductivity of substrates of different depths with or without plants
组别 基质厚度/cm Ks/(cm/min) 无植物[17] 6/10/14 54.457(±0.193) a 垂盆草 6 2.121(±0.177) c 10 1.975(±0.196) c 14 0.568(±0.002) e 佛甲草 6 2.641(±0.098) b 10 0.682(±0.067) d 14 0.743(±0.057) d 注:小写字母不同表示有无植物时不同厚度基质Ks差异显著(P<0.05)。 -
[1] VIJAYARAGHAVAN K. Green roofs: a critical review on the role of components, benefits, limitations and trends[J]. Renewable and Sustainable Energy Reviews,2016,57:740-752. doi: 10.1016/j.rser.2015.12.119 [2] 范俊鹏. 海绵城市理论下的沣西新城绿色屋顶设计研究展[D]. 西安: 西安建筑科技大学术, 2021. [3] XIAO M, LIN Y L, HAN J, et al. A review of green roof research and development in China[J]. Renewable and Sustainable Energy Reviews,2014,40:633-648. doi: 10.1016/j.rser.2014.07.147 [4] 孙义新, 张一, 朱焰, 等.基于药食同源作物紫苏的屋顶绿化模式研究[J]. 环境工程技术学报,2019,9(3):325-330. doi: 10.12153/j.issn.1674-991X.2019.03.050SUN Y X, ZHANG Y, ZHU Y, et al. Study on roof greening model with a medicine and edible homologous crop Perilla frutescens crispa[J]. Journal of Environmental Engineering Technology,2019,9(3):325-330. doi: 10.12153/j.issn.1674-991X.2019.03.050 [5] FARRELL C, MITCHELL R E, SZOTA C, et al. Green roofs for hot and dry climates: interacting effects of plant water use, succulence and substrate[J]. Ecological Engineering,2012,49:270-276. doi: 10.1016/j.ecoleng.2012.08.036 [6] 陈兴武, 甘露, 尹淑霞.基质深度和植被类型对屋顶绿化基质水分吸收能力的影响[J]. 安徽农业大学学报,2016,43(4):624-629. doi: 10.13610/j.cnki.1672-352x.20160712.001CHEN X W, GAN L, YIN S X. Effects of plant type and substrate depth on water absorption of green roof substrate[J]. Journal of Anhui Agricultural University,2016,43(4):624-629. doi: 10.13610/j.cnki.1672-352x.20160712.001 [7] ZHANG Z, SZOTA C, FLETCHER T D, et al. Green roof storage capacity can be more important than evapotranspiration for retention performance[J]. Journal of Environmental Management,2019,232:404-412. [8] SKOROBOGATOV A, HE J X, CHU A, et al. The impact of media, plants and their interactions on bioretention performance: a review[J]. Science of the Total Environment,2020,715:136918. doi: 10.1016/j.scitotenv.2020.136918 [9] 彭舜磊, 由文辉, 沈会涛.植被群落演替对土壤饱和导水率的影响[J]. 农业工程学报,2010,26(11):78-84. doi: 10.3969/j.issn.1002-6819.2010.11.014PENG S L, YOU W H, SHEN H T. Effect of syndynamic on soil saturated hydraulic conductivity[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(11):78-84. doi: 10.3969/j.issn.1002-6819.2010.11.014 [10] 魏玲娜, 陈喜, 程勤波, 等.红壤丘陵区土壤渗透性及其受植被影响分析[J]. 中国科技论文,2013,8(5):377-380. doi: 10.3969/j.issn.2095-2783.2013.05.004WEI L N, CHEN X, CHENG Q B, et al. Soil permeability and effects of vegetation in the red soil hilly region[J]. China Sciencepaper,2013,8(5):377-380. doi: 10.3969/j.issn.2095-2783.2013.05.004 [11] 胡钜鑫, 虎胆·吐马尔白, 穆丽德尔·托伙加, 等.非饱和土壤导水率试验计算与模拟分析[J]. 石河子大学学报(自然科学版),2019,37(1):105-111. doi: 10.13880/j.cnki.65-1174/n.2019.01.016HU J X, HUDAN T, MULIDEER T, et al. Analysis about the measurement and the simulation of unsaturated soil hydraulic conductivity[J]. Journal of Shihezi University (Natural Science),2019,37(1):105-111. doi: 10.13880/j.cnki.65-1174/n.2019.01.016 [12] 胡尹超, 秦华鹏, 林子璇.深圳绿色屋顶雨水滞留效应变化及其影响因素[J]. 深圳大学学报(理工版),2020,37(4):347-354. doi: 10.3724/SP.J.1249.2020.04347HU Y C, QIN H P, LIN Z X. Variation and influencing factors of rainwater retention of green roofs in Shenzhen[J]. Journal of Shenzhen University (Science and Engineering),2020,37(4):347-354. doi: 10.3724/SP.J.1249.2020.04347 [13] 葛德, 张守红.基质类型及厚度对绿色屋顶径流调控效益的影响[J]. 中国水土保持科学,2019,17(3):31-38. doi: 10.16843/j.sswc.2019.03.005GE D, ZHANG S H. Influence of types and depths of substrates on hydrological performances of green roofs[J]. Science of Soil and Water Conservation,2019,17(3):31-38. doi: 10.16843/j.sswc.2019.03.005 [14] 叶建军, 魏裕基, 肖衡林, 等.初绿化屋顶对雨水截留作用研究[J]. 给水排水,2014,50(5):139-143. doi: 10.3969/j.issn.1002-8471.2014.05.034 [15] 李田, 陈昱霖, 顾俊青.不同介质组成的粗放型绿色屋面降雨出流水质[J]. 同济大学学报(自然科学版),2015,43(11):1722-1727. doi: 10.11908/j.issn.0253-374x.2015.11.017LI T, CHEN Y L, GU J Q. Effluent quality of extensive green roofs with different substrates[J]. Journal of Tongji University (Natural Science),2015,43(11):1722-1727. doi: 10.11908/j.issn.0253-374x.2015.11.017 [16] 李国文, 李娜, 黎佳茜, 等.北方低温条件下沼渣资源化培育佛甲草的应用研究[J]. 环境工程技术学报,2019,9(1):103-110. doi: 10.3969/j.issn.1674-991X.2019.01.014LI G W, LI N, LI J X, et al. Application of cultivation of Sedum lineare Thunb with biogas residue resources under low temperature condition in North China[J]. Journal of Environmental Engineering Technology,2019,9(1):103-110. doi: 10.3969/j.issn.1674-991X.2019.01.014 [17] 陈璇, 周明来, 叶建军, 等.不同骨料对粗放型绿色屋顶人工基质理化性质的影响[J]. 湖北工业大学学报,2021,36(5):73-80. doi: 10.3969/j.issn.1003-4684.2021.05.016CHEN X, ZHOU M L, YE J J, et al. Effect of different aggregates on physical and chemical properties of extensive green roof artificial substrate[J]. Journal of Hubei University of Technology,2021,36(5):73-80. doi: 10.3969/j.issn.1003-4684.2021.05.016 [18] 周媛, 郭彩霞, 董艳芳, 等.9种景天属轻型屋顶绿化植物的耐热性研究[J]. 西北农林科技大学学报(自然科学版),2014,42(9):119-127. doi: 10.13207/j.cnki.jnwafu.2014.09.011ZHOU Y, GUO C X, DONG Y F, et al. Heat tolerance of 9 Sedums plants for light roof greening[J]. Journal of Northwest A & F University (Natural Science Edition),2014,42(9):119-127. doi: 10.13207/j.cnki.jnwafu.2014.09.011 [19] DUSZA Y, BAROT S, KRAEPIEL Y, et al. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type[J]. Ecology and Evolution,2017,7(7):2357-2369. doi: 10.1002/ece3.2691 [20] 段锦兰, 付宝春, 康红梅, 等.景天属植物引种及繁殖技术研究[J]. 山西农业科学,2013,41(12):1344-1346.DUAN J L, FU B C, KANG H M, et al. Studies on introduction and propagation of Sedum plants[J]. Journal of Shanxi Agricultural Sciences,2013,41(12):1344-1346. [21] 余孟好, 赵平, 曾小平, 等.屋顶绿化植物佛甲草对温度梯度的生理生态适应[J]. 广西植物,2012,32(3):333-339. doi: 10.3969/j.issn.1000-3142.2012.03.011YU M H, ZHAO P, ZENG X P, et al. Ecophysiological adaptation of green roof plant Sedum lineare to temperature variation[J]. Guihaia,2012,32(3):333-339. doi: 10.3969/j.issn.1000-3142.2012.03.011 [22] FLL (Forschungsgessellschaft Landschaftsentwicklung Landschaftsbau e V). Guidelines for the planning, execution, and upkeep of green-roof sites [R]. Bonn: FLL, 2008. [23] FASSMAN E A, SIMCOCK R E. V. Extensive green roofs for stormwater mitigation: part 1. design and construction[R]. Auckland: Auckland Regional Council, 2009. [24] FORREST L, GIOANNINI R, VANLEEUWEN D M, et al. Shallow substrates support the growth of contrasting plant types installed in irrigated, arid-climate Green Roofs1[J]. Journal of Environmental Horticulture,2017,35(4):146-155. doi: 10.24266/0738-2898-35.4.146 [25] 谢玲芝, 李俊楠, 王韶仲, 等.林分密度对水曲柳人工林吸收根生物量和根长密度的影响[J]. 东北林业大学学报,2014,42(9):1-5. doi: 10.3969/j.issn.1000-5382.2014.09.001XIE L Z, LI J N, WANG S Z, et al. Influence of stem density on absorptive root biomass and length density in Fraxinus mandshurica plantation[J]. Journal of Northeast Forestry University,2014,42(9):1-5. doi: 10.3969/j.issn.1000-5382.2014.09.001 [26] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs,2002,72(2):293-309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 [27] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist,2015,207(3):505-518. doi: 10.1111/nph.13363 [28] 李建兴, 何丙辉, 谌芸, 等.不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响[J]. 农业工程学报,2013,29(10):144-152.LI J X, HE B H, CHEN Y, et al. Root distribution features of typical herb plants for slope protection and their effects on soil shear strength[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(10):144-152. [29] TRON S, BODNER G, LAIO F, et al. Can diversity in root architecture explain plant water use efficiency?a modeling study[J]. Ecological Modelling,2015,312:200-210. doi: 10.1016/j.ecolmodel.2015.05.028 [30] GETTER K L, ROWE D B. Media depth influences Sedum green roof establishment[J]. Urban Ecosystems,2008,11(4):361-372. doi: 10.1007/s11252-008-0052-0 [31] COMAS L H, BECKER S R, CRUZ V M V, et al. Root traits contributing to plant productivity under drought[J]. Frontiers in Plant Science,2013,4:442. [32] LU J, YUAN J G, YANG J Z, et al. Effect of substrate depth on initial growth and drought tolerance of Sedum lineare in extensive green roof system[J]. Ecological Engineering,2015,74:408-414. doi: 10.1016/j.ecoleng.2014.11.018 [33] 李建兴, 何丙辉, 谌芸.不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报,2013,33(5):1535-1544. doi: 10.5846/stxb201205170737LI J X, HE B H, CHEN Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration[J]. Acta Ecologica Sinica,2013,33(5):1535-1544. doi: 10.5846/stxb201205170737 [34] 燕辉, 刘广全, 李红生.青杨人工林根系生物量、表面积和根长密度变化[J]. 应用生态学报,2010,21(11):2763-2768. doi: 10.13287/j.1001-9332.2010.0427YAN H, LIU G Q, LI H S. Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation[J]. Chinese Journal of Applied Ecology,2010,21(11):2763-2768. doi: 10.13287/j.1001-9332.2010.0427 [35] LU J R, ZHANG Q, WERNER A D, et al. Root-induced changes of soil hydraulic properties:a review[J]. Journal of Hydrology,2020,589:125203. doi: 10.1016/j.jhydrol.2020.125203 [36] BENGOUGH A G, MCKENZIE B M, HALLETT P D, et al. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany,2011,62(1):59-68. doi: 10.1093/jxb/erq350 [37] KOEBERNICK N, DALY K R, KEYES S D, et al. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation[J]. New Phytologist,2017,216(1):124-135. doi: 10.1111/nph.14705 [38] SCHOLL P, LEITNER D, KAMMERER G, et al. Root induced changes of effective 1D hydraulic properties in a soil column[J]. Plant and Soil,2014,381(1/2):193-213. [39] 杨荣金, 孙美莹, 张乐, 等.长江经济带生态环境保护的若干战略问题[J]. 环境科学研究,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36YANG R J, SUN M Y, ZHANG L, et al. Strategic issues of ecological environment protection in the Yangtze River Economic Belt[J]. Research of Environmental Sciences,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36 [40] 朱文彬, 孙倩莹, 李付杰, 等.厦门市城市绿地雨洪减排效应评价[J]. 环境科学研究,2019,32(1):74-84. doi: 10.13198/j.issn.1001-6929.2018.09.01ZHU W B, SUN Q Y, LI F J, et al. Assessment of the effect of urban green space landscape on reduction of storm water runoff in Xiamen City[J]. Research of Environmental Sciences,2019,32(1):74-84. doi: 10.13198/j.issn.1001-6929.2018.09.01 [41] 王金南, 孙宏亮, 续衍雪, 等.关于“十四五”长江流域水生态环境保护的思考[J]. 环境科学研究,2020,33(5):1075-1080. doi: 10.13198/j.issn.1001-6929.2020.03.22WANG J N, SUN H L, XU Y X, et al. Water eco-environment protection framework in the Yangtze River Basin during the 14th Five-year Plan Period[J]. Research of Environmental Sciences,2020,33(5):1075-1080. ◇ doi: 10.13198/j.issn.1001-6929.2020.03.22