留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卫星数据识别臭氧生成高值区的方法及其应用

卓俊玲 朱珊娴 隆重 徐炜达 王宇萌 李怀瑞

卓俊玲,朱珊娴,隆重,等.基于卫星数据识别臭氧生成高值区的方法及其应用[J].环境工程技术学报,2022,12(6):2039-2048 doi: 10.12153/j.issn.1674-991X.20220377
引用本文: 卓俊玲,朱珊娴,隆重,等.基于卫星数据识别臭氧生成高值区的方法及其应用[J].环境工程技术学报,2022,12(6):2039-2048 doi: 10.12153/j.issn.1674-991X.20220377
ZHUO J L,ZHU S X,LONG Z,et al.A satellite-based method and application for identifying high ozone production area[J].Journal of Environmental Engineering Technology,2022,12(6):2039-2048 doi: 10.12153/j.issn.1674-991X.20220377
Citation: ZHUO J L,ZHU S X,LONG Z,et al.A satellite-based method and application for identifying high ozone production area[J].Journal of Environmental Engineering Technology,2022,12(6):2039-2048 doi: 10.12153/j.issn.1674-991X.20220377

基于卫星数据识别臭氧生成高值区的方法及其应用

doi: 10.12153/j.issn.1674-991X.20220377
基金项目: 生态环境部生态环境执法局立项课题“生态环境执法监察”(2111102)
详细信息
    作者简介:

    卓俊玲(1973—),女,高级工程师,主要从事生态环境执法研究,zhuojl@acee.gov.cn

  • 中图分类号: X51

A satellite-based method and application for identifying high ozone production area

  • 摘要:

    近年来,我国臭氧污染问题逐步显现。为持续推动京津冀及周边、汾渭平原等重点区域环境质量改善,生态环境部实施了“千里眼”计划,构建了大气污染网格化监管体系。2020年,针对夏季臭氧污染问题,开展了臭氧生成高值区识别研究,向重点区域生态环境部门、监督帮扶现场工作组推送环境异常信息,为打赢蓝天保卫战提供了重要支撑。利用哨兵-5卫星数据,结合企业清单、用电数据、历史污染源检查问题等数据,通过RFM模型综合挖掘识别臭氧生成高值区。结果表明:京津冀和汾渭平原的大多数城市地区和工业集聚区属于VOCs控制区或VOCs-NOx共同控制区;该方法推送的臭氧生成高值区问题率为65.3%,高出整体问题率21.5个百分点;高值区内企业发现问题率为27.1%,高出非高值区3.7个百分点,提升了2020年夏季臭氧污染防治监督帮扶的工作成效。高值区问题率、高值区内企业问题率和推送次数有关,实践结果表明,经过重复推送,高值区内企业问题率呈先升后降的规律,企业问题率拐点时间与企业整改完成周期有关。该方法对于以包装印刷、工业涂装为主导的产业集群,应用效果较好。

     

  • 图  1  高值区识别技术路线

    Figure  1.  Technical route for high ozone production area identification

    图  2  高值区识别流程及结果示例

    Figure  2.  Example of high ozone production area identification process and results

    图  3  监督帮扶期间NO2柱浓度和HCHO柱浓度分布

    Figure  3.  Distribution of NO2 and HCHO column concentration during the inspection and assistance period

    图  4  不同时段O3控制区占比

    Figure  4.  Percentage of ozone control areas in different periods

    图  5  HCHO/NO2和涉VOCs企业空间分布

    Figure  5.  Distribution of HCHO/NO2 ratio and enterprises involving VOCs

    图  6  京津冀和汾渭平原44个城市的HCHO/NO2

    Figure  6.  HCHO/NO2 ratio of 44 cities in BTH Region and Fen-Wei Plain

    图  7  各时间段高值区分布及检查情况统计

    Figure  7.  Distribution of high ozone production areas and statistics of inspection in each period

    图  8  HCHO/NO2和问题企业分布

    Figure  8.  Distribution of HCHO/NO2 ratio and problematic enterprises

    图  9  高值区推送次数及高值区企业问题率统计

    Figure  9.  Number of push notifications on high ozone production areas and the problem rate of enterprises in high ozone production areas

    图  10  7类行业涉VOCs的问题企业数及问题率

    Figure  10.  Problems number and rate of enterprises in 7 types of industries involving VOCs

    表  1  各轮次检查中发现的问题企业数量统计

    Table  1.   Statistics of problematic enterprises found in each round of inspection

    检查轮次高值区推
    送批次
    整体区域高值区
    检查企业数问题企业数企业问题率/%检查企业数问题企业数企业问题率/%
    第1轮 1、2 8 729 3 130 35.9 771 289 37.5
    第2轮 2、3 11 182 2 604 23.3 913 263 28.8
    第3轮 5、6 12 325 2 473 20.1 1 375 337 24.5
    第4轮 7、8 10 279 2 136 20.8 888 202 22.7
    第5轮 9、10 8 555 1 773 20.7 639 152 23.8
    总计 51 070 12 116 23.7 4 586 1 243 27.1
    下载: 导出CSV

    表  2  推送4次及以上高值区的各检查轮次企业问题率

    Table  2.   Problem rate of enterprises in high ozone production areas pushed four times and above in each round of inspection % 

    检查轮次所有高值区推送5次高值区推送4次高值区
    第1轮35.957.158.2
    第2轮23.328.637.2
    第3轮20.150.030.0
    第4轮20.826.930.5
    第5轮20.718.815.9
    下载: 导出CSV

    表  3  7类行业高值区和非高值区的企业问题率

    Table  3.   Problem rate of enterprises in the 7 types of industries in high- and non-high ozone production areas

    行业类型高值区非高值区企业问题率差值/%
    无问题企业数问题企业数合计企业问题率/%无问题企业数问题企业数合计企业问题率/%
    包装印刷24212837034.62 7531 1083 86128.75.9
    工业涂装2 2787243 00224.124 7175 68430 40118.75.4
    化工62331693933.76 5573 3109 86733.50.1
    加油站32174934.750024774733.11.6
    石化733110429.863030393332.5−2.7
    油气储存21333.3
    其他行业952712222.145222067232.7−10.6
    总计3 3431 2434 58627.135 61110 87346 48423.43.7
    下载: 导出CSV
  • [1] 生态环境部. 2020年挥发性有机物治理攻坚方案[A/OL]. (2020-06-24)[2022-04-22]. http: //www. mee. gov. cn/xxgk2018/xxgk/xxgk03/202006/t20200624_785827. html. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202006/t20200624_785827.html.
    [2] LIU J, TARASICK D W, FIOLETOV V E, et al. A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective[J]. Atmospheric Chemistry and Physics,2013,13(22):11441-11464. doi: 10.5194/acp-13-11441-2013
    [3] HUANG C, LOU D M, HU Z Y, et al. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles[J]. Atmospheric Environment,2013,77:703-710. doi: 10.1016/j.atmosenv.2013.05.059
    [4] ZHANG F, ZHAO J, CHEN J, et al. Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China[J]. Journal of Environmental Sciences,2011,23(8):1342-1349. doi: 10.1016/S1001-0742(10)60559-1
    [5] 赵龙一, 郭佳华, 张宇航, 等.2015—2019年南阳市臭氧污染特征及气象因素影响[J]. 环境工程技术学报,2022,12(3):718-725. doi: 10.12153/j.issn.1674-991X.20210205

    ZHAO L Y, GUO J H, ZHANG Y H, et al. Analysis of ozone pollution characteristics and meteorological parameters in Nanyang City from 2015 to 2019[J]. Journal of Environmental Engineering Technology,2022,12(3):718-725. doi: 10.12153/j.issn.1674-991X.20210205
    [6] TANG X, WANG Z F, ZHU J, et al. Sensitivity of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme[J]. Atmospheric Environment,2010,44(31):3833-3842. doi: 10.1016/j.atmosenv.2010.06.026
    [7] CLEVELAND W S, GRAEDEL T E, KLEINER B, et al. Sunday and workday variations in photochemical air pollutants in New Jersey and New York[J]. Science,1974,186:1037-1038. doi: 10.1126/science.186.4168.1037
    [8] MILFORD J B, GAO D F, SILLMAN S, et al. Total reactive nitrogen (NOy) as an indicator of the sensitivity of ozone to reductions in hydrocarbon and NOx emissions[J]. Journal of Geophysical Research Atmospheres,1994,99(D2):3533. doi: 10.1029/93JD03224
    [9] DODGE M. Chemistry of oxidant formation: implications for designing effective control strategies[R]. Washington DC: US EPA, 1987.
    [10] 陈天赐, 潘文斌.基于光化学模型的臭氧生成敏感性研究进展[J]. 环境科学与技术,2019,42(11):201-207. doi: 10.19672/j.cnki.1003-6504.2019.11.029

    CHEN T C, PAN W B. Research progress of ozone formation sensitivity based on photochemical model[J]. Environmental Science & Technology,2019,42(11):201-207. doi: 10.19672/j.cnki.1003-6504.2019.11.029
    [11] MILFORD J B, RUSSELL A G, MCRAE G J. A new approach to photochemical pollution control: implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions[J]. Environmental Science & Technology,1989,23(10):1290-1301.
    [12] KLEINMAN L I. Low and high NOx tropospheric photochemistry[J]. Journal of Geophysical Research Atmospheres,1994,99(D8):16831. doi: 10.1029/94JD01028
    [13] ZHANG Y H, SU H, ZHONG L J, et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign[J]. Atmospheric Environment,2008,42(25):6203-6218. doi: 10.1016/j.atmosenv.2008.05.002
    [14] GENG F H, TIE X X, XU J M, et al. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China[J]. Atmospheric Environment,2008,42(29):6873-6883. doi: 10.1016/j.atmosenv.2008.05.045
    [15] CHOU C C K, TSAI C Y, SHIU C J, et al. Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CARE Beijing-2006): implications for the ozone production efficiency of NOx[J]. Journal of Geophysical Research Atmospheres,2009,114:D00G01.
    [16] XING J, WANG S X, JANG C, et al. Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology[J]. Atmospheric Chemistry and Physics,2011,11(10):5027-5044. doi: 10.5194/acp-11-5027-2011
    [17] TANG G, WANG Y, LI X, et al. Spatial-temporal variations in surface ozone in Northern China as observed during 2009-2010 and possible implications for future air quality control strategies[J]. Atmospheric Chemistry and Physics,2012,12(5):2757-2776. doi: 10.5194/acp-12-2757-2012
    [18] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
    [19] 王宇骏, 黄新雨, 裴成磊, 等.广州市近地面臭氧时空变化及其生成对前体物的敏感性初步分析[J]. 安全与环境工程,2016,23(3):83-88. doi: 10.13578/j.cnki.issn.1671-1556.2016.03.014

    WANG Y J, HUANG X Y, PEI C L, et al. Spatial-temporal variations of ground-level ozone and preliminary analysis on the sensitivity of ozone formation to precursors in Guangzhou City[J]. Safety and Environmental Engineering,2016,23(3):83-88. doi: 10.13578/j.cnki.issn.1671-1556.2016.03.014
    [20] 中国环境科学学会臭氧污染控制专业委员会. 中国大气臭氧污染防治蓝皮书(2020年)[M]. 北京: 科学出版社, 2020.
    [21] 李霄阳, 李思杰, 刘鹏飞, 等.2016年中国城市臭氧浓度的时空变化规律[J]. 环境科学学报,2018,38(4):1263-1274. doi: 10.13671/j.hjkxxb.2017.0399

    LI X Y, LI S J, LIU P F, et al. Spatial and temporal variations of ozone concentrations in China in 2016[J]. Acta Scientiae Circumstantiae,2018,38(4):1263-1274. doi: 10.13671/j.hjkxxb.2017.0399
    [22] 蒋美青, 陆克定, 苏榕, 等.我国典型城市群臭氧形成机制和关键VOCs的反应活性分析[J]. 科学通报,2018,63(12):1130-1141.
    [23] 陈楠, 陆兴成, 姚腾, 等.湖北臭氧分布特征及其管控措施[J]. 中国环境监测,2017,33(4):150-158. doi: 10.19316/j.issn.1002-6002.2017.04.19

    CHEN N, LU X C, YAO T, et al. Ozone distribution characteristics and its control measures in Hubei[J]. Environmental Monitoring in China,2017,33(4):150-158. doi: 10.19316/j.issn.1002-6002.2017.04.19
    [24] SILLMAN S. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations[J]. Journal of Geophysical Research Atmospheres,1995,100(D7):14175. doi: 10.1029/94JD02953
    [25] MARTIN R V, FIORE A M, van DONKELAAR A. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions[J]. Geophysical Research Letters,2004,31(6):337-357.
    [26] MARTIN R V. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns[J]. Journal of Geophysical Research Atmospheres,2003,108(D17):4537. doi: 10.1029/2003JD003453
    [27] MILLET D B, JACOB D J, TURQUETY S, et al. Formaldehyde distribution over North America: implications for satellite retrievals of formaldehyde columns and isoprene emission[J]. Journal of Geophysical Research Atmospheres,2006,111(D24):D24S02.
    [28] DUNCAN B N, YOSHIDA Y, OLSON J R, et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation[J]. Atmospheric Environment,2010,44(18):2213-2223. doi: 10.1016/j.atmosenv.2010.03.010
    [29] 单源源, 李莉, 刘琼, 等.基于OMI数据的中国中东部臭氧及前体物的时空分布[J]. 环境科学研究,2016,29(8):1128-1136. doi: 10.13198/j.issn.1001-6929.2016.08.04

    SHAN Y Y, LI L, LIU Q, et al. Spatial-temporal distribution of ozone and its precursors over central and Eastern China based on OMI data[J]. Research of Environmental Sciences,2016,29(8):1128-1136. doi: 10.13198/j.issn.1001-6929.2016.08.04
    [30] 武卫玲, 薛文博, 雷宇, 等.基于OMI数据的京津冀及周边地区O3生成敏感性[J]. 中国环境科学,2018,38(4):1201-1208. doi: 10.3969/j.issn.1000-6923.2018.04.001

    WU W L, XUE W B, LEI Y, et al. Sensitivity analysis of ozone in Beijing-Tianjin-Hebei (BTH) and its surrounding area using OMI satellite remote sensing data[J]. China Environmental Science,2018,38(4):1201-1208. doi: 10.3969/j.issn.1000-6923.2018.04.001
    [31] 庄立跃, 陈瑜萍, 范丽雅, 等.基于OMI卫星数据和MODIS土地覆盖类型数据研究珠江三角洲臭氧敏感性[J]. 环境科学学报,2019,39(11):3581-3592.

    ZHUANG L Y, CHEN Y P, FAN L Y, et al. Study on the ozone formation sensitivity in the Pearl River Delta based on OMI satellite data and MODIS land cover type products[J]. Acta Scientiae Circumstantiae,2019,39(11):3581-3592.
    [32] 李泽琨. 珠江三角洲地区臭氧及其前体物非线性响应特征及控制对策研究[D]. 广州: 华南理工大学, 2015.
    [33] JIN X M, HOLLOWAY T. Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument[J]. Journal of Geophysical Research:Atmospheres,2015,120(14):7229-7246. doi: 10.1002/2015JD023250
    [34] WEI X L, LI Y S, LAM K S, et al. Impact of biogenic VOC emissions on a tropical cyclone-related ozone episode in the Pearl River Delta region, China[J]. Atmospheric Environment,2007,41(36):7851-7864. doi: 10.1016/j.atmosenv.2007.06.012
    [35] HUGHES A. Strategic database marketing[M].New York:McGraw-Hill, 2005.
    [36] 张文强, 刘诚, 郝楠, 等.O2-O2云反演算法及其在TROPOMI上的应用[J]. 遥感学报,2020,24(11):1363-1378.

    ZHANG W Q, LIU C, HAO N, et al. O2-O2 cloud retrieval algorithm and application to TROPOMI[J]. Journal of Remote Sensing,2020,24(11):1363-1378.
    [37] ESA. Sentinel-5P TROPOMI User Guide[EB/OL]. [2022-05-26]. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-5p-tropomi.
    [38] 李旭文, 张悦, 姜晟, 等.“哨兵-5P”卫星TROPOMI传感器在江苏省域大气污染监测中的初步应用[J]. 环境监控与预警,2019,11(2):10-16. doi: 10.3969/j.issn.1674-6732.2019.02.002

    LI X W, ZHANG Y, JIANG S, et al. Preliminary application of atmospheric pollution monitoring in Jiangsu Province with TROPOMI sensor onboard sentinel-5P satellite[J]. Environmental Monitoring and Forewarning,2019,11(2):10-16. doi: 10.3969/j.issn.1674-6732.2019.02.002
    [39] NASA. Earth data, LP DAAC[EB/OL]. [2022-05-26]. https://lpdaac.usgs.gov. https://lpdaac.usgs.gov.2022-05-26/.
    [40] 成方妍, 刘世梁, 尹艺洁, 等.基于MODIS NDVI的广西沿海植被动态及其主要驱动因素[J]. 生态学报,2017,37(3):788-797.

    CHENG F Y, LIU S L, YIN Y J, et al. The dynamics and main driving factors of coastal vegetation in Guangxi based on MODIS NDVI[J]. Acta Ecologica Sinica,2017,37(3):788-797. □
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  411
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回