留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市污水处理厂抗生素抗性基因研究进展

张冰 赵琳 陈坦

张冰,赵琳,陈坦.城市污水处理厂抗生素抗性基因研究进展[J].环境工程技术学报,2023,13(4):1384-1394 doi: 10.12153/j.issn.1674-991X.20220847
引用本文: 张冰,赵琳,陈坦.城市污水处理厂抗生素抗性基因研究进展[J].环境工程技术学报,2023,13(4):1384-1394 doi: 10.12153/j.issn.1674-991X.20220847
ZHANG B,ZHAO L,CHEN T.Research progress of antibiotic resistance genes in wastewater treatment plants[J].Journal of Environmental Engineering Technology,2023,13(4):1384-1394 doi: 10.12153/j.issn.1674-991X.20220847
Citation: ZHANG B,ZHAO L,CHEN T.Research progress of antibiotic resistance genes in wastewater treatment plants[J].Journal of Environmental Engineering Technology,2023,13(4):1384-1394 doi: 10.12153/j.issn.1674-991X.20220847

城市污水处理厂抗生素抗性基因研究进展

doi: 10.12153/j.issn.1674-991X.20220847
基金项目: 中央高校基本科研业务费专项资金项目(2022QNPY56,2022QNYL27)
详细信息
    作者简介:

    张冰(1990—),女,讲师,研究方向为污水处理系统微生物群落及抗生素抗性,zhangbingwhu@126.com

    通讯作者:

    陈坦(1986—),男,副教授,研究方向为固体废物处理与处置工程,chentan05@tsinghua.org.cn

  • 中图分类号: X703;X172

Research progress of antibiotic resistance genes in wastewater treatment plants

  • 摘要:

    抗生素抗性基因(ARGs)是一类对自然环境及人体健康造成极大威胁的新型污染物,城市污水处理厂是ARGs的重要源和汇,具有重大潜在生态风险。系统梳理了污水处理过程中不同类型ARGs的组成变化特征和转移机制,提出β-内酰胺类、大环内酯类、四环素类、磺胺类、氨基糖苷类等类型ARGs广泛存在于全球污水处理厂中,但不同类型ARGs的丰度随污水处理过程的变化特征各异,且不同处理单元中的高丰度ARGs存在差异,水平转移是ARGs的主要转移机制。总结了环境条件、进水水质、操作参数等常见因素对ARGs丰度和分布的影响。在此基础上提出,识别具有指示作用的ARGs及其关键影响因素,定量分析各类因素对ARGs丰度、种类及水平转移机制的影响,以及建立ARGs风险评价标准体系是城市污水处理厂监测与控制ARGs潜在生态风险的未来发展方向。

     

  • 图  1  2006—2021年国内外有关污水处理厂ARGs的发文统计

    Figure  1.  Statistical charts of publications on ARGs in WWTPs at home and abroad from 2006 to 2021

    图  2  污水处理厂中ARGs沿程变化模式

    注:图中ARGs的个数对应大致丰度。

    Figure  2.  Conceptual map of ARGs changes along the process in a WWTP

    图  3  ARGs的垂直和水平转移机理

    Figure  3.  Mechanism of vertical and horizontal transfer of ARGs

    图  4  污水处理厂中ARGs的主要影响因素

    Figure  4.  Main influencing factors of ARGs in WWTPs

    表  1  不同地区污水处理厂中不同种类ARGs在进水、出水、污泥中的丰度变化

    Table  1.   Variations of abundance of different kinds of ARGs in influent, effluent and sludge in various WWTPs

    抗性
    基因
    种类
    所在地区抗性基因
    亚型名称
    进水中丰度/
    (拷贝/L)
    出水中丰度/
    (拷贝/L)
    污泥中丰度/
    (拷贝/g)
    去除
    效果
    (lg C)1)
    处理工艺
    β-内酰胺类 中国北京[20] bl2d_oxa10、bl3_imp等51种 1.25×1010 4.73×107 1.47×1010 2.42 MBR工艺
    美国加利福尼
    亚州[21]
    blaM-1 2.23×108 2.82×106 1.9 活性污泥法+氯消毒
    中国河北[22] blaPSE-1 106 2.46×104 107 2.64 A2/O工艺+氯消毒
    美国马萨
    诸塞州[21]
    blaTEM-uni 1.41×109 4.73×108 0.47 活性污泥法+氯消毒
    瑞典哥德堡[20] mecA 5.01×104 5.01×103 1 活性污泥法+生物滤池
    大环内酯类 中国北京[20] ermF、Inua等46种 1.17×1010 1.89×107 0.75×1010 2.79 MBR工艺
    中国华北[23] erm 2种 (7.0±12)×107 (1.2±0.9)×1010 活性污泥法+氯消毒
    中国河北[23] ermB 3×108 5.30×105 4×108 2.77 A2/O工艺+氯消毒
    以色列夏夫丹[21] ermB 3.02×1010 2×105~3.02×107 3~4 活性污泥法
    ermF 6.02×1010 3.02×106~2×108 2~4
    四环素类 中国北京[20] tetG、tetM等
    39 种
    1.39×1010 5.14×107 2.5×1010 2.43 MBR工艺
    中国华北[22] tet 15种 (8.4±2.4)×107 (1.3±1.6)×1010 活性污泥法+氯消毒
    中国香港[21] tetA 1010.78~1011.2 ND~107.33 3~4 活性污泥法+氯消毒
    tetC 1011.13~1011.3 ND~107.12 4~5
    中国南京[21] tetA 5.01×1010 1.41×109 1.55 活性污泥法
    tetC 8.13×1010 1.38×109 1.77
    中国河北[23] tetC 8×108 4. 13×106 2.23 A2/O工艺+氯消毒
    美国威斯
    康星州[21]
    tetG 109.4~1010.8 107.2~108.9 1~4 活性污泥法+紫外/氯消毒
    tetQ 1010.2~1012 106.9~109.2 1~6
    中国合肥[24] tetQ 2.03×1011 2×107 1.11×1010 4.01 SBR工艺+氯消毒
    以色列夏夫丹[21] tetO 2×1010 ND~106 4.3 活性污泥法
    美国密歇根州[25] tetO 5.13×109 9.12×106 1.78×109 2.75 活性污泥法+氯消毒
    tetW 5.13×109 5.13×106 5.62×108 3
    中国合肥[24] tetO 2×109 106 2×109 3.3 SBR+氯消毒
    tetW 2×109 2×106 2×109 3
    磺胺类 中国北京[20] dfrA1等7种 2.8×109 4.3×107 2.5×1010 1.81 MBR
    中国浙江[26] dfrA1 1.3×107 2×105 9.38 ×105 1.9 A2/O
    dfrA13 8×106 1.2×105 5.93×104 1.8
    中国华北[22] sul 3种 (6.7±7.2)×108 (2.2±2.8)×1011 活性污泥法+氯消毒
    美国密歇根州[25] sul1 1.82×109 1.05×107 1.00×108 2.24 活性污泥法+氯消毒
    美国密歇根州[21] sul1 108.46~1010.54 107.37~109.75 1~3 活性污泥法/氧化沟/生物转盘/MBR+紫外/氯消毒
    中国合肥[24] sul1 3.88×1010 1.5×107 9.06×1010 3.41 SBR+氯消毒
    sul2 3×109 4×106 109 2.88
    以色列夏夫丹[21] sul1 1011 107.78~108.48 3~4 活性污泥法
    sul2 1011 106.48~107.88 3~5
    中国河北[22] sul2 2×108 5. 58×106 1010 1.7 A2/O+氯消毒
    氨基糖苷类 中国北京[20] ant2iaant3ia等35种 3.26×1010 2.06×108 4.38×1010 2.2 MBR
    氟喹诺酮-喹诺酮-氟苯尼考-氯霉素和安非霉素类 中国北京[20] cml_e3、catb3等9种 3.26×1010 0.84×107 1.67×1010 3.59 MBR
    中国浙江[26] floR 1.2×107 2.1×105 1.59 × 105 1.8 A2/O
    中国华北[22] qnr 3种 (7.3±9.6)×106 (1.5±2.3)×109 活性污泥法+氯消毒
    多药类 中国北京[20] qacEdelta1、qacH等51种 1.39×1010 1.5×108 3.75×1010 1.97 MBR
    中国哈尔滨[27] mexF 7.09×107 3×106 1.37 A/O
    万古霉素类 比利时托里勒[21] vanA ND ND 活性污泥法+膜滤
    中国哈尔滨[27] vanCO3 3.50×105 ND 5.54 A/O
    vanXD 1.08×104 4×103 0.43
      1)C为丰度。注:ND表示未检出。
    下载: 导出CSV

    表  2  污水处理厂中ARGs分布和转移的主要影响因素

    Table  2.   Main influencing factors of ARGs distribution and transfer in WWTPs

    影响因素对ARGs的影响文献来源
    抗生素 磺胺类药物与sul1、四环素与tetX具有强相关性 [47-48]
    选择作用具有交叉性,氯霉素与氨基糖苷类ARGs共现 [8,49]
    氨苄青霉素造成大肠杆菌内多种非β-内酰胺类ARGs共现 [50]
    高浓度的环丙沙星未造成特定耐药基因的富集,或存在滞后性与共选择 [51-52]
    杀菌抗生素对ARGs的富集效果比抑菌抗生素更强 [53]
    不同浓度的四环素影响ARGs的HGT [54]
    重金属 水中抗生素抗性检出频率随重金属暴露浓度的升高而升高 [55]
    ARGs的丰度与钒等重金属浓度的相关性强于抗生素,湖泊重金属污染增强了细菌的耐药性 [60]
    部分HMRGs与intI1基因具有相关性,影响ARGs的HGT [62]
    其他有机物 甲苯、乙苯、PNP、PAP等芳香族化合物浓度影响ARGs [63]
    苯乙烯、孔雀绿染料等能提升RP4质粒的转移效率 [60]
    卡马西平等有机物通过增加活性氧(ROS)等机制促进ARGs的HGT [57]
    纳米颗粒可能促进ARGs的富集传播,抑或去除ARGs [64-65]
    微塑料促进污水处理厂中ARGs的富集与传播 [66-67]
    微塑料对eARGs的吸附作用及促进HGT作用强于iARGs [68]
    微塑料对二沉池出水ARGs的富集能力显著高于进水与污泥 [69]
    环境因素及
    水质条件
    温度与污水处理厂ARGs丰度显著相关,其中与blamcr丰度成反比,与ermB、sul2丰度成正比 [70-73]
    温度影响ARGs的转移,夏季有利于VGT,冬季有利于HGT [28]
    氨氮浓度与tetC、ermB等ARGs丰度呈正相关 [23]
    高COD促进耐药菌繁殖,提高转化几率 [74]
    盐度增加到1%以上会大大降低ARGs的总体丰度 [75]
    操作参数及
    处理工艺
    ARGs丰度与HRT呈正相关,与MLSS浓度、DO浓度、SRT呈负相关 [18]
    高MLSS浓度、长SRT、低污泥负荷可降低ARGs丰度和多样性 [26,66-67,76]
    厌氧与好氧工艺对ARGs影响较大 [77]
    膜滤、电化学消毒、微生物燃料电池能显著降低ARGs [53,78-79]
    氯消毒等后续处理对ARGs去除效果不一 [25,81-83]
    氯及UV消毒会促进宿主繁殖,导致eARGs增多 [80]
    UV与氯消毒联用比单独氯消毒工艺效果好 [84]
    UV-AOPs自由基能够极大去除ARGs [86]
    AOPs中Fenton有关技术对ARGs去除效果优于生物处理及其他AOPs [85,87]
    需调节改进工艺以保证ARB与ARGs的去除效果 [88-89]
    下载: 导出CSV
  • [1] 陈宇, 许亚南, 庞燕.抗生素赋存、来源及风险评估研究进展[J]. 环境工程技术学报,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180

    CHEN Y, XU Y N, PANG Y. Advances in research on the occurrence, source and risk assessment of antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180
    [2] 申思奇. 交互带抗生素抗性基因污染分布特征及演变过程模拟研究[D]. 西安: 长安大学, 2021.
    [3] TAN L, WANG F, LIANG M M, et al. Antibiotic resistance genes attenuated with salt accumulation in saline soil[J]. Journal of Hazardous Materials,2019,374:35-42. doi: 10.1016/j.jhazmat.2019.04.020
    [4] QIN K N, WEI L L, LI J J, et al. A review of ARGs in WWTPs: sources, stressors and elimination[J]. Chinese Chemical Letters,2020,31(10):2603-2613. doi: 10.1016/j.cclet.2020.04.057
    [5] 宋冉冉, 国晓春, 卢少勇, 等.东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J]. 环境科学研究,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27

    SONG R R, GUO X C, LU S Y, et al. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of East Dongting Lake Basin[J]. Research of Environmental Sciences,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27
    [6] ZHANG A N, HOU C J, NEGI M, et al. Online searching platform for the antibiotic resistome in bacterial tree of life and global habitats[J]. FEMS Microbiology Ecology,2020,96(7):fiaa107. doi: 10.1093/femsec/fiaa107
    [7] 王敏妍, 李亚丽, 邹世春, 等.水环境中胞内外抗生素抗性基因分析的DNA提取方法及污染现状研究进展[J]. 分析测试学报,2021,40(6):869-875. doi: 10.3969/j.issn.1004-4957.2021.06.012

    WANG M Y, LI Y L, ZOU S C, et al. DNA extraction methods for intracellular and extracellular antibiotic resistance genes and their pollution status in aquatic environment[J]. Journal of Instrumental Analysis,2021,40(6):869-875. doi: 10.3969/j.issn.1004-4957.2021.06.012
    [8] 耿嘉璐. 抗性基因和药物的多介质环境分布特征与生态风险评价[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [9] ZHANG D W, PENG Y, CHAN C L, et al. Metagenomic survey reveals more diverse and abundant antibiotic resistance genes in municipal wastewater than hospital wastewater[J]. Frontiers in Microbiology,2021,12:712843. doi: 10.3389/fmicb.2021.712843
    [10] JU F, LI B, MA L P, et al. Antibiotic resistance genes and human bacterial pathogens: co-occurrence, removal, and enrichment in municipal sewage sludge digesters[J]. Water Research,2016,91:1-10. doi: 10.1016/j.watres.2015.11.071
    [11] PRUDEN A,PEI R T,STORTEBOOM H,et al. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado[J]. Environmental Science & Technology,2006,40(23):7445-7450.
    [12] 严岩, 尤本胜, 刘伟京, 等.基于文献计量学的近20年水环境中抗生素污染研究趋势及热点分析[J]. 环境工程技术学报,2023,13(3):1161-1167. doi: 10.12153/j.issn.1674-991X.20220343

    YAN Y, YOU B S, LIU W J, et al. Research trend and hot spot analysis of antibiotic pollution in water environment in recent 20 years based on bibliometrics[J]. Journal of Environmental Engineering Technology,2023,13(3):1161-1167. doi: 10.12153/j.issn.1674-991X.20220343
    [13] 付垚. 抗生素压力下好氧颗粒污泥的培养及抗性基因归趋[D]. 济南: 山东大学, 2020.
    [14] PAZDA M, KUMIRSKA J, STEPNOWSKI P, et al. Antibiotic resistance genes identified in wastewater treatment plant systems:a review[J]. Science of the Total Environment,2019,697:134023. doi: 10.1016/j.scitotenv.2019.134023
    [15] WANG J L, CHU L B, WOJNÁROVITS L, et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview[J]. The Science of the Total Environment,2020,744:140997. doi: 10.1016/j.scitotenv.2020.140997
    [16] AUGUET O, PIJUAN M T, BORREGO C M, et al. Sewers as potential reservoirs of antibiotic resistance[J]. Science of the Total Environment,2017,605/606:1047-1054. doi: 10.1016/j.scitotenv.2017.06.153
    [17] FAN X Y, GAO J F, PAN K L, et al. Functional genera, potential pathogens and predicted antibiotic resistance genes in 16 full-scale wastewater treatment plants treating different types of wastewater[J]. Bioresource Technology,2018,268:97-106. doi: 10.1016/j.biortech.2018.07.118
    [18] AN X L, SU J Q, LI B, et al. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR[J]. Environment International,2018,117:146-153. doi: 10.1016/j.envint.2018.05.011
    [19] SU J Q, AN X L, LI B, et al. Correction to: metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China[J]. Microbiome,2018,6(1):127. doi: 10.1186/s40168-018-0504-6
    [20] ZHENG W L, HUYAN J Q, TIAN Z, et al. Clinical class 1 integron-integrase gene:a promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant[J]. Environment International,2020,135:105372. doi: 10.1016/j.envint.2019.105372
    [21] HONG P Y, AL-JASSIM N, ANSARI M I, et al. Environmental and public health implications of water reuse: antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes[J]. Antibiotics,2013,2(3):367-399. doi: 10.3390/antibiotics2030367
    [22] MAO D Q, YU S, RYSZ M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants[J]. Water Research,2015,85:458-466. doi: 10.1016/j.watres.2015.09.010
    [23] 谢辉, 包樱钰, 李菲菲, 等.A2/O生活污水处理系统中抗生素抗性基因的分布及去除[J]. 环境工程,2019,37(12):80-89. doi: 10.13205/j.hjgc.201912015

    XIE H, BAO Y Y, LI F F, et al. Distribution and removal of antibiotic resistance genes in an A2/O domestic wastewater treatment plant[J]. Environmental Engineering,2019,37(12):80-89. doi: 10.13205/j.hjgc.201912015
    [24] YUAN L, LI Z H, ZHANG M Q, et al. Mercury/silver resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant[J]. Science of the Total Environment,2019,657:1014-1022. doi: 10.1016/j.scitotenv.2018.12.088
    [25] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment,2012,421/422:173-183. doi: 10.1016/j.scitotenv.2012.01.061
    [26] 姚鹏城, 陈嘉瑜, 张永明, 等.抗生素抗性基因在生活及工业混合废水处理系统中的分布和去除[J]. 生态毒理学报,2020,15(1):201-208. doi: 10.7524/AJE.1673-5897.20190307004

    YAO P C, CHEN J Y, ZHANG Y M, et al. Distribution and removal of antibiotic resistance genes in municipal and industrial mixed wastewater treatment systems[J]. Asian Journal of Ecotoxicology,2020,15(1):201-208. doi: 10.7524/AJE.1673-5897.20190307004
    [27] SUN S J, GENG J L, MA L X, et al. Changes in antibiotic resistance genotypes and phenotypes after two typical sewage disposal processes[J]. Chemosphere,2022,291:132833. doi: 10.1016/j.chemosphere.2021.132833
    [28] CHE Y, XIA Y, LIU L, et al. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing[J]. Microbiome,2019,7(1):44. doi: 10.1186/s40168-019-0663-0
    [29] 袁立霞. 制药废水处理中菌群特征与抗性基因传播规律研究[D]. 石家庄: 河北科技大学, 2019.
    [30] 金亦豪, 刘子述, 胡宝兰.环境中胞内胞外抗性基因的分离检测、分布与传播研究进展[J]. 微生物学报,2022,62(4):1247-1259.

    JIN Y H, LIU Z S, HU B L. Isolation, detection, distribution, and transmission of intracellular and extracellular antibiotic resistance genes in the environment[J]. Acta Microbiologica Sinica,2022,62(4):1247-1259.
    [31] YU K F, LI P, HE Y L, et al. Unveiling dynamics of size-dependent antibiotic resistome associated with microbial communities in full-scale wastewater treatment plants[J]. Water Research,2020,187:116450. doi: 10.1016/j.watres.2020.116450
    [32] WRIGHT G D. Antibiotic resistance in the environment: a link to the clinic[J]. Current Opinion in Microbiology,2010,13(5):589-594. doi: 10.1016/j.mib.2010.08.005
    [33] SU J Q, WEI B, OUYANG W Y, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting[J]. Environmental Science & Technology,2015,49(12):7356-7363.
    [34] ZHOU J Z, KANG S, SCHADT C W, et al. Spatial scaling of functional gene diversity across various microbial taxa[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(22):7768-7773. doi: 10.1073/pnas.0709016105
    [35] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science,2008,321(5887):365-367. doi: 10.1126/science.1159483
    [36] WEI Z Y, FENG K, WANG Z J, et al. High-throughput single-cell technology reveals the contribution of horizontal gene transfer to typical antibiotic resistance gene dissemination in wastewater treatment plants[J]. Environmental Science & Technology,2021,55(17):11824-11834.
    [37] SMALLA K, JECHALKE S, TOP E M. Plasmid detection, characterization, and ecology[J]. Microbiology Spectrum,2015,3(1):PLAS-0038-2014.
    [38] CZEKALSKI N, BERTHOLD T, CAUCCI S, et al. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland[J]. Frontiers in Microbiology,2012,3:106.
    [39] 武彩云, 李慧莉, 覃彩霞, 等.螺旋霉素废水处理过程中菌群结构、水质特征及抗性基因之间关系分析[J]. 环境科学,2021,42(9):4358-4365. doi: 10.13227/j.hjkx.202101086

    WU C Y, LI H L, QIN C X, et al. Mutual influence between microbial community, wastewater characteristics, and antibiotic resistance genes during spiramycin production wastewater treatment[J]. Environmental Science,2021,42(9):4358-4365. doi: 10.13227/j.hjkx.202101086
    [40] SEITZ P, BLOKESCH M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria[J]. FEMS Microbiology Reviews,2013,37(3):336-363. doi: 10.1111/j.1574-6976.2012.00353.x
    [41] WANG Y, LU J, ENGELSTÄDTER J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. The ISME Journal,2020,14(8):2179-2196. doi: 10.1038/s41396-020-0679-2
    [42] ZHANG S, WANG Y, LU J, et al. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress[J]. The ISME Journal,2021,15(10):2969-2985. doi: 10.1038/s41396-021-00980-4
    [43] COLOMER-LLUCH M, IMAMOVIC L, JOFRE J, et al. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry[J]. Antimicrobial Agents and Chemotherapy,2011,55(10):4908-4911. doi: 10.1128/AAC.00535-11
    [44] CALERO-CÁCERES W, MELGAREJO A, COLOMER-LLUCH M, et al. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions[J]. Environmental Science & Technology,2014,48(13):7602-7611.
    [45] ZHAO J H, LI B, LV P, et al. Distribution of antibiotic resistance genes and their association with bacteria and viruses in decentralized sewage treatment facilities[J]. Frontiers of Environmental Science & Engineering,2022,16(3):35.
    [46] FOGG P C M. Identification and characterization of a direct activator of a gene transfer agent[J]. Nature Communications,2019,10:595. doi: 10.1038/s41467-019-08526-1
    [47] ZHENG W L, WEN X H, ZHANG B, et al. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant[J]. Science of the Total Environment,2019,646:1293-1303. doi: 10.1016/j.scitotenv.2018.07.400
    [48] 刘航. 典型抗生素与污水脱氮除磷工艺微生物相互作用机理研究[D]. 天津: 天津大学, 2017.
    [49] ZHAO R X, YU K, ZHANG J Y, et al. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches[J]. Water Research,2020,186:116318. doi: 10.1016/j.watres.2020.116318
    [50] LI A D, MA L P, JIANG X T, et al. Cultivation-dependent and high-throughput sequencing approaches studying the co-occurrence of antibiotic resistance genes in municipal sewage system[J]. Applied Microbiology and Biotechnology,2017,101(22):8197-8207. doi: 10.1007/s00253-017-8573-1
    [51] BENGTSSON-PALME J, HAMMARÉN R, PAL C, et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics[J]. Science of the Total Environment,2016,572:697-712. doi: 10.1016/j.scitotenv.2016.06.228
    [52] GAO Y X, LI X, FAN X Y, et al. Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: a review on occurrence, transmission and removal[J]. Journal of Water Process Engineering,2022,46:102539. doi: 10.1016/j.jwpe.2021.102539
    [53] SHETH R U, CABRAL V, CHEN S P, et al. Manipulating bacterial communities by in situ microbiome engineering[J]. Trends in Genetics,2016,32(4):189-200. doi: 10.1016/j.tig.2016.01.005
    [54] JUTKINA J, RUTGERSSON C, FLACH C F, et al. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance[J]. Science of the Total Environment,2016,548/549:131-138. doi: 10.1016/j.scitotenv.2016.01.044
    [55] STEPANAUSKAS R, GLENN T C, JAGOE C H, et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms[J]. Environmental Microbiology,2006,8(9):1510-1514. doi: 10.1111/j.1462-2920.2006.01091.x
    [56] JIAO Y N, CHEN H, GAO R X, et al. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems[J]. Chemosphere,2017,184:53-61. doi: 10.1016/j.chemosphere.2017.05.149
    [57] WANG Y, LU J, MAO L K, et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial Genera[J]. The ISME Journal,2019,13(2):509-522. doi: 10.1038/s41396-018-0275-x
    [58] MA Y J, METCH J W, YANG Y, et al. Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment[J]. FEMS Microbiology Ecology,2016,92(3):fiw022. doi: 10.1093/femsec/fiw022
    [59] SONG J X, RENSING C, HOLM P E, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil[J]. Environmental Science & Technology,2017,51(5):3040-3047.
    [60] KOMIJANI M, SHAMABADI N S, SHAHIN K, et al. Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment[J]. Environmental Pollution,2021,274:116569. doi: 10.1016/j.envpol.2021.116569
    [61] GUPTA S K, SHIN H, HAN D, et al. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant[J]. Journal of Microbiology,2018,56(6):408-415. doi: 10.1007/s12275-018-8195-z
    [62] Di CESARE A, ECKERT E M, D'URSO S, et al. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants[J]. Water Research,2016,94:208-214. doi: 10.1016/j.watres.2016.02.049
    [63] MA X Y, ZHANG X W, XIA J T, et al. Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge[J]. The Science of the Total Environment,2021,800:149549. doi: 10.1016/j.scitotenv.2021.149549
    [64] CUI H L, SMITH A L. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: a comprehensive review[J]. Environmental Research, 2022, 204: 112373.
    [65] EZEUKO A S, OJEMAYE M O, OKOH O O, et al. Potentials of metallic nanoparticles for the removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater: a critical review[J]. Journal of Water Process Engineering,2021,41:102041. doi: 10.1016/j.jwpe.2021.102041
    [66] YANG Y Y, LIU G H, SONG W J, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes[J]. Environment International,2019,123:79-86. doi: 10.1016/j.envint.2018.11.061
    [67] SYRANIDOU E, KALOGERAKIS N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs[J]. Science of the Total Environment,2022,804:150141. doi: 10.1016/j.scitotenv.2021.150141
    [68] CHENG Y, LU J R, FU S S, et al. Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics[J]. Environmental Pollution, 2022, 292(Pt A): 118284.
    [69] 吴文斌, 付树森, 毛步云, 等.微塑料对城市污水中胞内和胞外抗性基因的富集特征研究[J]. 环境科学研究,2021,34(6):1434-1440. doi: 10.13198/j.issn.1001-6929.2021.02.15

    WU W B, FU S S, MAO B Y, et al. Enrichment of intracellular and extracellular antibiotic resistance genes by microplastics in municipal wastewater[J]. Research of Environmental Sciences,2021,34(6):1434-1440. doi: 10.13198/j.issn.1001-6929.2021.02.15
    [70] SUN C X, ZHANG B, NING D L, et al. Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: diversity, composition, phylogenetic group based assembly and co-occurrence pattern[J]. Water Research,2021,200:117295. doi: 10.1016/j.watres.2021.117295
    [71] ZHANG B, SUN C X, XIA Y, et al. Profiles of antibiotic resistance genes and virulence genes and their temporal interactions in the membrane bioreactor and oxidation ditch[J]. Environment International,2019,131:104980. doi: 10.1016/j.envint.2019.104980
    [72] SCHAGES L, WICHERN F, KALSCHEUER R, et al. Winter is coming:impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant[J]. Science of the Total Environment,2020,712:136499. doi: 10.1016/j.scitotenv.2020.136499
    [73] RODRÍGUEZ E A, PINO N J, JIMÉNEZ J N. Climatological and epidemiological conditions are important factors related to the abundance of blaKPC and other antibiotic resistance genes (ARGs) in wastewater treatment plants and their effluents, in an endemic country[J]. Frontiers in Cellular and Infection Microbiology,2021,11:686472. doi: 10.3389/fcimb.2021.686472
    [74] JIN M, LIU L, WANG D N, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial Genera by natural transformation[J]. The ISME Journal,2020,14(7):1847-1856. doi: 10.1038/s41396-020-0656-9
    [75] LIU M T, LI Q L, SUN H H, et al. Impact of salinity on antibiotic resistance genes in wastewater treatment bioreactors[J]. Chemical Engineering Journal,2018,338:557-563. doi: 10.1016/j.cej.2018.01.066
    [76] MUNIR M, WONG K, XAGORARAKI I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research,2011,45(2):681-693. doi: 10.1016/j.watres.2010.08.033
    [77] CHRISTGEN B, YANG Y, AHAMMAD S Z, et al. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater[J]. Environmental Science & Technology,2015,49(4):2577-2584.
    [78] ANTHONY E T, OJEMAYE M O, OKOH A I, et al. Potentials of low-cost methods for the removal of antibiotic-resistant bacteria and their genes in low budget communities: a review[J]. Journal of Water Process Engineering,2021,40:101919. doi: 10.1016/j.jwpe.2021.101919
    [79] 张启伟, 孙丽华, 史鹏飞, 等.混凝沉淀-UF工艺去除二级出水中ARGs效能研究[J]. 环境科学研究,2019,32(4):718-724. doi: 10.13198/j.issn.1001-6929.2018.09.25

    ZHANG Q W, SUN L H, SHI P F, et al. Removal efficiency of ARGs in secondary effluent by coagulation-sedimentation-UF process[J]. Research of Environmental Sciences,2019,32(4):718-724. doi: 10.13198/j.issn.1001-6929.2018.09.25
    [80] 付树森, 王艺, 王肖霖, 等.氯和紫外消毒过程中胞外抗性基因的产生特征[J]. 中国环境科学,2021,41(10):4756-4762. doi: 10.3969/j.issn.1000-6923.2021.10.032

    FU S S, WANG Y, WANG X L, et al. Generation of extracellular antibiotic resistance genes during municipal wastewater chlorination and UV disinfection[J]. China Environmental Science,2021,41(10):4756-4762. doi: 10.3969/j.issn.1000-6923.2021.10.032
    [81] 李金梅, 李曦, 张舒婷.消毒工艺对水体中抗生素抗性基因的去除效果[J]. 净水技术,2018,37(2):10-16. doi: 10.15890/j.cnki.jsjs.2018.02.003

    LI J M, LI X, ZHANG S T. Effect of disinfection process on removal of antibiotic resistance genes (ARGs) in water body[J]. Water Purification Technology,2018,37(2):10-16. doi: 10.15890/j.cnki.jsjs.2018.02.003
    [82] ZHUANG Y, REN H Q, GENG J J, et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection[J]. Environmental Science and Pollution Research,2015,22(9):7037-7044. doi: 10.1007/s11356-014-3919-z
    [83] SHI P, JIA S Y, ZHANG X X, et al. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J]. Water Research,2013,47(1):111-120. doi: 10.1016/j.watres.2012.09.046
    [84] ZHANG T Y, HU Y R, JIANG L, et al. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water[J]. Chemical Engineering Journal,2019,358:589-597. doi: 10.1016/j.cej.2018.09.218
    [85] 姚鹏城. 典型抗生素的预氧化降解: 可生化性及抑菌效应变化机制[D]. 上海: 上海师范大学, 2022.
    [86] MENG X Q, LI F J, YI L, et al. Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistant Pseudomonas Putida by UV/H2O2 and UV/peroxydisulfate disinfection processes[J]. Journal of Hazardous Materials,2022,430:128502. doi: 10.1016/j.jhazmat.2022.128502
    [87] HOU J, CHEN Z Y, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Research,2019,159:511-520. doi: 10.1016/j.watres.2019.05.034
    [88] RODRÍGUEZ-CHUECA J, della Giustina S V, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes[J]. Science of the Total Environment,2019,652:1051-1061. doi: 10.1016/j.scitotenv.2018.10.223
    [89] AHMED Y, ZHONG J X, YUAN Z G, et al. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process[J]. Water Research,2021,197:117075. ◇ doi: 10.1016/j.watres.2021.117075
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  902
  • HTML全文浏览量:  301
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 网络出版日期:  2023-07-19

目录

    /

    返回文章
    返回