Research progress on quorum sensing regulation of organic pollutants biodegradation
-
摘要:
有机污染物的生物降解效果受微生物活性影响,群体感应是微生物控制其生理活性的重要机制。在有机污染物生物降解过程中,群体感应对关键降解酶的合成、生物膜的形成以及菌群结构的调控等产生影响。直接投加群体感应信号分子或能产生信号分子的菌剂可促进群体感应调控,提高污染物降解率,但pH、温度、群体感应淬灭菌、纳米颗粒物等环境因素可影响群体感应的活性。当前,群体感应调控有机污染物生物降解的研究尚处于起步阶段。综述了相关研究进展,介绍了群体感应对有机污染物生物降解的影响机理,归纳了强化群体感应调控的方式和影响群体感应活性的主要环境因素,并对其应用前景进行了展望。
-
关键词:
- 群体感应 /
- 生物降解 /
- 多环芳烃(PAHs) /
- 信号分子 /
- 调控机制
Abstract:The biodegradation of organic pollutants is influenced by microbial activities, and quorum sensing (QS) is a crucial mechanism that regulates physiological activities. During the biodegradation process of organic pollutants, QS affects the synthesis of key enzymes for degradation, the formation of biofilms, the regulation of microbial community structure, etc. Furthermore, directly adding QS signaling molecules or using bacterial agents that produce such molecules can promote QS regulation, thereby enhancing organic pollutants biodegradation rates. However, environmental factors like pH, temperature, quorum quenching bacteria, nanoparticles, etc., can negatively impact QS activities. Currently, research on QS regulation of organic pollutant biodegradation is still in its early stages. This review summarizes the progress of related research, discusses the mechanisms of QS on the biodegradation of organic pollutants, outlines strategies to enhance QS regulation, identifies the main environmental factors affecting QS activities, and provides prospects for its application.
-
表 1 受AHL-QS调控的纯菌对有机污染物的降解研究
Table 1. Research on the biodegradation of organic pollutants by pure cultures regulated by AHL-QS
纯菌 产生的AHLs 有机污染物 QS调控作用 Pseudomonas aeruginosa PAO1[16-17,19] C4-HSL、3OC12-HSL PAHs 调控生物膜形成、鼠李糖脂合成与分泌 Pseudomonas aeruginosa N6P6[28] C4-HSL、3OC12-HSL PAHs 影响PAHs降解率和生物膜结构 Croceicoccus naphthovorans PQ-2[29-30] 3OC6-HSL、3OH-C8-HSL PAHs 调控降解酶的基因表达、细胞表面疏水性 Novosphingobium pentaromativorans US6-1[31] 结构未明的AHLs PAHs 调控降解酶的基因表达、细胞表面疏水性和EPS生成 Pseudomonas putida AQ8[24] 中长链AHLs BTEX 调控苯/甲苯双加氧酶基因和联二苯/甲苯/苯双加氧酶基因表达 Pseudomonas aeruginosa CGMCC 1.860[25-26] C4-HSL、C6-HSL 苯酚 调控双加氧酶合成 Sphingonomas sp. YK5[27] C8-HSL 双酚A 调控降解酶的基因表达 Acinetobacter sp. DR1[32] 结构未明的AHLs 正十六烷 调控正十六烷降解和生物膜形成 表 2 强化AHL-QS调控对混合微生物体系降解有机污染物的研究
Table 2. Research on the biodegradation of organic pollutants by mixed cultures enhanced by AHL-QS regulation
混合体系 QS强化手段 有机污染物 QS调控作用 活性污泥[44] 投加C6-HSL和3OC6-HSL 苯酚 维持稳定的苯酚降解率 生物滤池[46] 投加混合AHLs或
接种QS菌氯苯 降解率提升约50%,优化生物膜形成和菌群多样性 生物滤池[47] 投加混合AHLs或
接种QS菌甲苯 促进了甲苯的溶解性和平均降解率,提高低温条件下附着生物量及生物膜分布的均一性 石油污染土壤[45] 投加C12-HSL和
烷烃降解混合菌烷烃 提高碳氢化合物的降解率,促进混合菌生物膜形成,强化微生物呼吸作用活性 微生物燃料电池[48] 投加从EPS中提取的AHLs 氯霉素 加快氯霉素的降解,促进生物膜形成,维持稳定电流输出 功能性菌群[37] 投加含形成生物膜的QS菌 造纸废水 强化生物膜形成,提高木质素的降解率 -
[1] WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research[J]. Nature,2017,551(7680):313-320. doi: 10.1038/nature24624 [2] WATERS C M, BASSLER B L. Quorum sensing: cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology,2005,21:319-346. doi: 10.1146/annurev.cellbio.21.012704.131001 [3] CHURCHILL M E A, CHEN L L. Structural basis of acyl-homoserine lactone-dependent signaling[J]. Chemical Reviews,2011,111(1):68-85. doi: 10.1021/cr1000817 [4] 刘亚南, 朱颖楠, 王瑾丰, 等.有机污染物胞外作用机理及微生物群体感应调控特征[J]. 工业水处理,2021,41(6):1-13. doi: 10.11894/iwt.2021-0280LIU Y N, ZHU Y N, WANG J F, et al. The extracellular removal mechanism of organic pollutants and the regulation characteristics of microbial quorum sensing[J]. Industrial Water Treatment,2021,41(6):1-13. doi: 10.11894/iwt.2021-0280 [5] SHROUT J D, NERENBERG R. Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms[J]. Environmental Science & Technology,2012,46(4):1995-2005. [6] SUN Z Q, XI J Y, YANG C P, et al. Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: a review[J]. Frontiers of Environmental Science & Engineering,2022,16(7):87. [7] HUANG J H, SHI Y H, ZENG G M, et al. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview[J]. Chemosphere,2016,157:137-151. doi: 10.1016/j.chemosphere.2016.05.032 [8] 朱泽邦. 盐度冲击下厌氧氨氧化菌的群体感应及微生物群落结构研究[D]. 青岛: 青岛大学, 2020. [9] 何航, 赵健, 孙宁, 等.好氧颗粒膜生物污水处理技术研究进展[J]. 环境工程技术学报,2021,11(1):163-172.HE H, ZHAO J, SUN N, et al. Research progress of aerobic granular membrane biological wastewater treatment technology[J]. Journal of Environmental Engineering Technology,2021,11(1):163-172. [10] TRIPATHI S, CHANDRA R, PURCHASE D, et al. Quorum sensing: a promising tool for degradation of industrial waste containing persistent organic pollutants[J]. Environmental Pollution,2022,292:118342. doi: 10.1016/j.envpol.2021.118342 [11] 生弘杰, 王芳, 冯发运, 等. 基于群体感应的生物膜技术在土壤污染修复中的应用与展望[J/OL]. 土壤学报. [2023-02-20]. doi: 10.11766/trxb202208210463.SHENG H J, WANG F, FENG F Y, et al. Application and prospect of biofilm techniques based on quorum sensing in soil pollution remediation[J]. Acta Pedologica Sinica. [2023-02-20]. doi: 10.11766/trxb202208210463. [12] 王亚军, 司运美, 李彦娟.群体感应在生物强化功能菌定殖及降解能力增强中的作用研究进展[J]. 应用生态学报,2022,33(10):2871-2880.WANG Y J, SI Y M, LI Y J. Research progress on the role of quorum sensing in the colonization and degradation ability enhancement of bioaugmentation functional bacteria[J]. Chinese Journal of Applied Ecology,2022,33(10):2871-2880. [13] 陈新语. 基于群体感应的水处理膜改性及其抗生物污染性能研究[D]. 镇江: 江苏大学, 2022. [14] PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology,2016,14(9):576-588. doi: 10.1038/nrmicro.2016.89 [15] SCHUSTER M, SEXTON D J, DIGGLE S P, et al. Acyl-homoserine lactone quorum sensing: from evolution to application[J]. Annual Review of Microbiology,2013,67:43-63. doi: 10.1146/annurev-micro-092412-155635 [16] YAN S M, WU G. Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions[J]. Journal of Applied Genetics,2017,58(4):545-563. doi: 10.1007/s13353-017-0402-9 [17] MÜLLER M M, HÖRMANN B, KUGEL M, et al. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874[J]. Applied Microbiology and Biotechnology,2011,89(3):585-592. doi: 10.1007/s00253-010-2901-z [18] WILLIAMS P, CÁMARA M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules[J]. Current Opinion in Microbiology,2009,12(2):182-191. doi: 10.1016/j.mib.2009.01.005 [19] QI J, WANG B B, LI J, et al. Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1[J]. Environmental Science and Pollution Research,2015,22(9):6743-6755. doi: 10.1007/s11356-014-3833-4 [20] VARJANI S J, UPASANI V N. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514[J]. Bioresource Technology,2016,222:195-201. doi: 10.1016/j.biortech.2016.10.006 [21] MUKHERJEE A K, BORDOLOI N K. Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium[J]. Environmental Science and Pollution Research,2012,19(8):3380-3388. doi: 10.1007/s11356-012-0862-8 [22] 冒学宇, 李勇, 吴丛杨慧, 等.石油烃降解菌的筛选及其降解特性研究[J]. 环境工程技术学报,2022,12(3):886-892.MAO X Y, LI Y, WU C Y H, et al. Research on the screening of petroleum hydrocarbon degrading bacteria and their degradation characteristics[J]. Journal of Environmental Engineering Technology,2022,12(3):886-892. [23] HUANG Y L, ZENG Y H, YU Z L, et al. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems: a potential broad application on bioremediation[J]. Bioresource Technology,2013,148:311-316. doi: 10.1016/j.biortech.2013.08.155 [24] CHICCA I, BECARELLI S, DARTIAHL C, et al. Degradation of BTEX mixture by a new Pseudomonas putida strain: role of the quorum sensing in the modulation of the upper BTEX oxidative pathway[J]. Environmental Science and Pollution Research,2020,27(29):36203-36214. doi: 10.1007/s11356-020-09650-y [25] YONG Y C, ZHONG J J. N-Acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa[J]. Process Biochemistry,2010,45(12):1944-1948. doi: 10.1016/j.procbio.2010.05.006 [26] YONG Y C, ZHONG J J. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway[J]. Bioresource Technology,2013,136:761-765. doi: 10.1016/j.biortech.2013.03.134 [27] GAO C, ZENG Y H, LI C Y, et al. Bisphenol A biodegradation by Sphingonomas sp. YK5 is regulated by acyl-homoserine lactone signaling molecules[J]. Science of the Total Environment,2022,802:149898. doi: 10.1016/j.scitotenv.2021.149898 [28] MANGWANI N, KUMARI S, DAS S. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6[J]. Applied Microbiology and Biotechnology,2015,99(23):10283-10297. doi: 10.1007/s00253-015-6868-7 [29] HUANG Y L, ZENG Y H, FENG H, et al. Croceicoccus naphthovorans sp. nov., a polycyclic aromatic hydrocarbons-degrading and acylhomoserine-lactone-producing bacterium isolated from marine biofilm, and emended description of the genus Croceicoccus[J]. International Journal of Systematic and Evolutionary Microbiology,2015,65(5):1531-1536. [30] YU Z L, HU Z Y, XU Q M, et al. The LuxI/LuxR-type quorum sensing system regulates degradation of polycyclic aromatic hydrocarbons via two mechanisms[J]. International Journal of Molecular Sciences,2020,21(15):5548. doi: 10.3390/ijms21155548 [31] CHEN A N, HUANG Y L. Acyl homoserine lactone based quorum sensing affects phenanthrene removal by Novosphingobium pentaromativorans US6-1 through altering cell surface properties[J]. International Biodeterioration & Biodegradation,2020,147:104841. [32] KANG Y S, PARK W. Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1[J]. Journal of Applied Microbiology,2010,109(5):1650-1659. [33] MISHRA S, HUANG Y H, LI J Y, et al. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants[J]. Chemosphere,2022,294:133609. doi: 10.1016/j.chemosphere.2022.133609 [34] MANGWANI N, SHUKLA S K, KUMARI S, et al. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation[J]. RSC Advances,2016,6(62):57540-57551. doi: 10.1039/C6RA12824F [35] ZHANG Y P, WANG F, ZHU X S, et al. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation[J]. Bioresource Technology,2015,193:274-280. doi: 10.1016/j.biortech.2015.06.110 [36] YESANKAR P J, PAL M, PATIL A, et al. Microbial exopolymeric substances and biosurfactants as ‘bioavailability enhancers’ for polycyclic aromatic hydrocarbons biodegradation[J]. International Journal of Environmental Science and Technology,2023,20(5):5823-5844. doi: 10.1007/s13762-022-04068-0 [37] YADAV S, TRIPATHI S, PURCHASE D, et al. Development of a biofilm-forming bacterial consortium and quorum sensing molecules for the degradation of lignin-containing organic pollutants[J]. Environmental Research,2023,226:115618. doi: 10.1016/j.envres.2023.115618 [38] MENG Q, XU Q M, XU Y M, et al. A FadR-type regulator activates the biodegradation of polycyclic aromatic hydrocarbons by mediating quorum sensing in Croceicoccus naphthovorans strain PQ-2[J]. Applied and Environmental Microbiology,2023,89(5):e0043323. doi: 10.1128/aem.00433-23 [39] FERNÁNDEZ-LUQUEÑO F, VALENZUELA-ENCINAS C, MARSCH R, et al. Microbial communities to mitigate contamination of PAHs in soil: possibilities and challenges: a review[J]. Environmental Science and Pollution Research,2011,18(1):12-30. doi: 10.1007/s11356-010-0371-6 [40] HUANG H, FAN X, PENG P C, et al. Two birds with one stone: simultaneous improvement of biofilm formation and nitrogen transformation in MBBR treating high ammonia nitrogen wastewater via exogenous N-acyl homoserine lactones[J]. Chemical Engineering Journal,2020,386:124001. doi: 10.1016/j.cej.2019.124001 [41] GAO J, DUAN Y, LIU Y, et al. Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge[J]. Journal of Environmental Sciences,2019,78:53-62. doi: 10.1016/j.jes.2018.06.022 [42] YU Y C, HAN P, ZHOU L J, et al. Ammonia monooxygenase-mediated cometabolic biotransformation and hydroxylamine-mediated abiotic transformation of micropollutants in an AOB/NOB coculture[J]. Environmental Science & Technology,2018,52(16):9196-9205. [43] SAYAVEDRA-SOTO L A, GVAKHARIA B, BOTTOMLEY P J, et al. Nitrification and degradation of halogenated hydrocarbons: a tenuous balance for ammonia-oxidizing bacteria[J]. Applied Microbiology and Biotechnology,2010,86(2):435-444. doi: 10.1007/s00253-010-2454-1 [44] VALLE A, BAILEY M J, WHITELEY A S, et al. N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge[J]. Environmental Microbiology,2004,6(4):424-433. doi: 10.1111/j.1462-2920.2004.00581.x [45] AL-KHARUSI S, ABED R M M, DOBRETSOV S. Changes in respiration activities and bacterial communities in a bioaugmented oil-polluted soil in response to the addition of acyl homoserine lactones[J]. International Biodeterioration & Biodegradation,2016,107:165-173. [46] SUN Z Q, XI J Y, YEUNG M, et al. Two quorum sensing enhancement methods optimized the biofilm of biofilters treating gaseous chlorobenzene[J]. Science of the Total Environment,2022,807:150589. doi: 10.1016/j.scitotenv.2021.150589 [47] SUN Z Q, YANG B R, YEUNG M, et al. Quorum sensing improved the low-temperature performance of biofilters treating gaseous toluene[J]. Journal of Hazardous Materials,2022,437:129277. doi: 10.1016/j.jhazmat.2022.129277 [48] WU X Y, ZHANG L N, LV Z P, et al. N-acyl-homoserine lactones in extracellular polymeric substances from sludge for enhanced chloramphenicol-degrading anode biofilm formation in microbial fuel cells[J]. Environmental Research,2022,207:112649. doi: 10.1016/j.envres.2021.112649 [49] MANGWANI N, KUMARI S, DAS S. Effect of synthetic N-acylhomoserine lactones on cell-cell interactions in marine Pseudomonas and biofilm mediated degradation of polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal,2016,302:172-186. doi: 10.1016/j.cej.2016.05.042 [50] MA H J, WANG X Z, ZHANG Y, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge[J]. Bioresource Technology,2018,247:116-124. doi: 10.1016/j.biortech.2017.09.043 [51] PANCHAVININ S, TOBINO T, HARA-YAMAMURA H, et al. Candidates of quorum sensing bacteria in activated sludge associated with N-acyl homoserine lactones[J]. Chemosphere,2019,236:124292. doi: 10.1016/j.chemosphere.2019.07.023 [52] SHENG H J, HARIR M, BOUGHNER L A, et al. N-acyl-homoserine lactone dynamics during biofilm formation of a 1,2,4-trichlorobenzene mineralizing community on clay[J]. Science of the Total Environment,2017,605/606:1031-1038. doi: 10.1016/j.scitotenv.2017.06.233 [53] FU H M, WANG J F, LIU Q J, et al. The role of immobilized quorum sensing strain in promoting biofilm formation of Moving Bed Biofilm Reactor during long-term stable operation[J]. Environmental Research,2022,215:114159. doi: 10.1016/j.envres.2022.114159 [54] YOSHIDA S, OGAWA N, FUJII T, et al. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1[J]. Journal of Applied Microbiology,2009,106(3):790-800. doi: 10.1111/j.1365-2672.2008.04027.x [55] PETROVICH M, WU C Y, ROSENTHAL A, et al. Nitrosomonas europaea biofilm formation is enhanced by Pseudomonas aeruginosa[J]. FEMS Microbiology Ecology, 2017. doi: 10.1093/femsec/fix047. [56] MELLBYE B L, SPIECK E, BOTTOMLEY P J, et al. Acyl-homoserine lactone production in nitrifying bacteria of the Genera Nitrosospira, Nitrobacter, and Nitrospira identified via a survey of putative quorum-sensing genes[J]. Applied and Environmental Microbiology,2017,83(22):e01540. [57] SHENG H J, YIN Y, XIANG L L, et al. Sorption of N-acyl homoserine lactones on maize straw derived biochars: characterization, kinetics and isotherm analysis[J]. Chemosphere,2022,299:134446. doi: 10.1016/j.chemosphere.2022.134446 [58] YAN H C, LIU C C, YU W T, et al. The aggregate distribution of Pseudomonas aeruginosa on biochar facilitates quorum sensing and biofilm formation[J]. Science of the Total Environment,2023,856:159034. doi: 10.1016/j.scitotenv.2022.159034 [59] GRANDCLÉMENT C, TANNIÈRES M, MORÉRA S, et al. Quorum quenching: role in nature and applied developments[J]. FEMS Microbiology Reviews,2016,40(1):86-116. doi: 10.1093/femsre/fuv038 [60] ENGLMANN M, FEKETE A, KUTTLER C, et al. The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites[J]. Journal of Chromatography A,2007,1160(1/2):184-193. [61] YATES E A, PHILIPP B, BUCKLEY C, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa[J]. Infection and Immunity,2002,70(10):5635-5646. doi: 10.1128/IAI.70.10.5635-5646.2002 [62] WANG M Z, ZHENG X, ZHANG K, et al. A new method for rapid construction of a Pseudomonas sp. HF-1 bioaugmented system: accelerating acylated homoserine lactones secretion by pH regulation[J]. Bioresource Technology,2014,169:229-235. doi: 10.1016/j.biortech.2014.06.098 [63] TAIT K, HUTCHISON Z, THOMPSON F L, et al. Quorum sensing signal production and inhibition by coral-associated vibrios[J]. Environmental Microbiology Reports,2010,2(1):145-150. doi: 10.1111/j.1758-2229.2009.00122.x [64] FETZNER S. Quorum quenching enzymes[J]. Journal of Biotechnology,2015,201:2-14. doi: 10.1016/j.jbiotec.2014.09.001 [65] HUANG J J, HAN J I, ZHANG L H, et al. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1[J]. Applied and Environmental Microbiology,2003,69(10):5941-5949. doi: 10.1128/AEM.69.10.5941-5949.2003 [66] UROZ S, OGER P M, CHAPELLE E, et al. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases[J]. Applied and Environmental Microbiology,2008,74(5):1357-1366. doi: 10.1128/AEM.02014-07 [67] CHOWDHARY P K, KESHAVAN N, NGUYEN H Q, et al. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines[J]. Biochemistry,2007,46(50):14429-14437. doi: 10.1021/bi701945j [68] UROZ S, HEINONSALO J. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi[J]. FEMS Microbiology Ecology,2008,65(2):271-278. doi: 10.1111/j.1574-6941.2008.00477.x [69] del V. LEGUINA A C, NIETO C, PAJOT H F, et al. Inactivation of bacterial quorum sensing signals N-acyl homoserine lactones is widespread in yeasts[J]. Fungal Biology,2018,122(1):52-62. doi: 10.1016/j.funbio.2017.10.006 [70] 倪凌峰, 王亚宜.基于群体感应猝灭理论的MBR膜污染控制技术研究进展[J]. 哈尔滨工业大学学报,2019,51(8):191-200.NI L F, WANG Y Y. Advances in MBR biofouling control based on quorum sensing and quenching[J]. Journal of Harbin Institute of Technology,2019,51(8):191-200. [71] OH H S, LEE C H. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment[J]. Journal of Membrane Science,2018,554:331-345. doi: 10.1016/j.memsci.2018.03.019 [72] 赵畅, 王文昭, 徐期勇.群体感应淬灭菌的分离及其膜污染控制性能[J]. 环境科学,2016,37(12):4720-4726.ZHAO C, WANG W Z, XU Q Y. Isolation of quorum quenching bacteria and their function for controlling membrane biofouling[J]. Environmental Science,2016,37(12):4720-4726. [73] 程阳眷, 黄丹, 王玉璠, 等.环境介质对微生物群体感应信号分子的影响[J]. 中国环境科学,2023,43(4):2007-2016. doi: 10.19674/j.cnki.issn1000-6923.20221207.009CHENG Y J, HUANG D, WANG Y F, et al. Influences of environmental substrates on microbial quorum-sensing signals[J]. China Environmental Science,2023,43(4):2007-2016. doi: 10.19674/j.cnki.issn1000-6923.20221207.009 [74] VEGA L M, MATHIEU J, YANG Y, et al. Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans[J]. International Biodeterioration & Biodegradation,2014,91:82-87. [75] GÓMEZ-GÓMEZ B, ARREGUI L, SERRANO S, et al. Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles[J]. Science of the Total Environment,2019,696:133869. doi: 10.1016/j.scitotenv.2019.133869 [76] LIU P L, CHEN X, CHEN W L. Adsorption of N-acyl-homoserine lactone onto colloidal minerals presents potential challenges for quorum sensing in the soil environment[J]. Geomicrobiology Journal,2015,32(7):602-608. doi: 10.1080/01490451.2014.914603 [77] NAIK S P, SCHOLIN J, CHING S, et al. Quorum sensing disruption in Vibrio harveyi bacteria by clay materials[J]. Journal of Agricultural and Food Chemistry,2018,66(1):40-44. doi: 10.1021/acs.jafc.7b03918 [78] FITZGERALD N J M, SIMCIK M F, NOVAK P J. Perfluoroalkyl substances increase the membrane permeability and quorum sensing response in Aliivibrio fischeri[J]. Environmental Science & Technology Letters,2018,5(1):26-31. [79] TIAN X Y, DING H, KE W X, et al. Quorum sensing in fungal species[J]. Annual Review of Microbiology,2021,75:449-469. doi: 10.1146/annurev-micro-060321-045510 [80] PAGGI R A, MARTONE C B, FUQUA C, et al. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus[J]. FEMS Microbiology Letters,2003,221(1):49-52. ◇ doi: 10.1016/S0378-1097(03)00174-5