留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微塑料对土壤生态系统的影响及其修复技术

李信茹 董翠敏 石峰 周民 米屹东 苏海磊 刘雪松 王凡凡 魏源

李信茹,董翠敏,石峰,等.微塑料对土壤生态系统的影响及其修复技术[J].环境工程技术学报,2024,14(3):732-741 doi: 10.12153/j.issn.1674-991X.20230425
引用本文: 李信茹,董翠敏,石峰,等.微塑料对土壤生态系统的影响及其修复技术[J].环境工程技术学报,2024,14(3):732-741 doi: 10.12153/j.issn.1674-991X.20230425
LI X R,DONG C M,SHI F,et al.Effects of microplastics on soil ecosystems and remediation technologies[J].Journal of Environmental Engineering Technology,2024,14(3):732-741 doi: 10.12153/j.issn.1674-991X.20230425
Citation: LI X R,DONG C M,SHI F,et al.Effects of microplastics on soil ecosystems and remediation technologies[J].Journal of Environmental Engineering Technology,2024,14(3):732-741 doi: 10.12153/j.issn.1674-991X.20230425

微塑料对土壤生态系统的影响及其修复技术

doi: 10.12153/j.issn.1674-991X.20230425
基金项目: 国家自然科学基金项目(41977294);国家重点研发计划项目(2021YFC3201001)
详细信息
    作者简介:

    李信茹(1996—),女,博士,主要研究方向为新污染物环境行为,18813145607@163.com

    通讯作者:

    王凡凡(1984—),女,副研究员,博士,主要研究方向为新污染物环境行为,wang.fanfan@craes.org.cn

    魏源(1983—),男,研究员,博士,主要研究方向为新污染物环境行为,wei.yuan@craes.org.cn

  • 中图分类号: X53

Effects of microplastics on soil ecosystems and remediation technologies

  • 摘要:

    由于农膜破碎、污水灌溉等活动,土壤中的微塑料含量与丰度正逐渐超越海洋,并成为土壤的主要污染源之一。土壤生物能吸收土壤微塑料,其中粮食作物中的微塑料能通过食物链进入人体,造成人体微塑料暴露风险,此外,土壤微塑料也会直接对土壤产生毒性。概述了微塑料在土壤生态系统中的来源、迁移等环境行为,重点综述了微塑料对土壤生态系统的影响。结果表明:1)微塑料能通过土壤颗粒间的空隙、植物侧根裂缝及动物运动等在土壤环境系统中迁移转运;2)微塑料能影响土壤物理化学性质、植物生长发育、动物行为和微生物多样性;3)微生物和酶能降解土壤环境中的微塑料,并直接减少土壤系统中的微塑料,而生物炭可以减轻微塑料对土壤生态系统的毒性,三者均为土壤微塑料修复技术的潜在选择。最后,提出了土壤微塑料未来可能的研究方向,以期为土壤微塑料的污染防治提供指导。

     

  • 图  1  微塑料在土壤生态系统中的主要行为

    Figure  1.  Main behaviors of microplastics in soil ecosystems

    图  2  土壤微塑料对植物生长的影响

    Figure  2.  Effects of microplastics in soil on growth of plants

    表  1  微塑料对土壤物理性质的影响

    Table  1.   Effects of microplastics on soil physical properties

    种类 浓度/% 土壤基质 处理时间 结果 数据来源
    PP、HDPE、PA、PES PA、HDPE均为梯度浓度,0.05、0.10、0.20、0.40;PP、PES均为梯度浓度,0.25、0.50、1.00、2.00 壤土 35 d 所有微塑料均影响土壤容重,PES增加土壤持水能力 文献[39]
    合成纤维、HDPE、PLA 合成纤维为0.001;
    HDPE和PLA均为0.1
    砂质黏壤土 30 d 当暴露于HDPE时,土壤的pH显著低于暴露于其他处理时。对照处理的土壤平均质量直径分别比添加纤维、HDPE和PLA的土壤大24%、35%和28%。对照土壤大于2 000 µm的大团聚体数量分别比HDPE和PLA土壤大60%和53%。相反,与对照土壤相比,暴露于微塑料的土壤中63~250 µm的微团聚体数量明显更高 文献[40]
    PES PES为梯度浓度,0.01、0.3 黏壤土 1 a 土壤容重、土壤团聚体粒径分布和饱和导水率均无显著变化。0.3%浓度PES处理的土壤中30 μm的孔隙显著增加 文献[41]
    PES、HDPE、PP、PS、PET PES为0.2;HDPE、PS、PP、PET均为2 壤土 2个月 HDPE、PES、PET、PP和PS降低了土壤容重;PA、PES和PS显著减少水稳定性团聚体;所有的微塑料均改变土壤结构,其影响程度各不相同 文献[36]
      注:PP(polypropylene)为聚丙烯;HDPE(high density polyethylene)为高密度聚乙烯;PA(polyamide)为聚酰胺;PES(polyester)为聚酯;PLA(polylactic acid)为聚乳酸;PS(polystyrene)为聚苯乙烯;PET(polyethylene terephthalate)为聚对苯二甲酸乙二醇酯。
    下载: 导出CSV

    表  2  植物对微塑料的吸收

    Table  2.   Absorption of microplastics in plants

    微塑料 培养条件 微塑料信息 植物 吸收情况 数据来源
    携带荧光与否 官能团修饰 粒径/μm 浓度/(mg/kg) 地下部 地上部
    PS 水培 + COOHNH2-F 0.2 50、100 拟南芥 NM 文献[45]
    0.05 10、100、1 000 洋葱 NM 文献[46]
    0.1~1、5 10、20 胡萝卜 √(但未观察到5 μm的微塑料) 文献[28]
    + 0.1 100 蚕豆 NM 文献[47]
    + 0.1、0.3、0.5、0.7 50 黄瓜 √(茎/叶片/花/果实) 文献[32]
    + 0.2 50 生菜 文献[48]
    + 0.2、2 50 生菜/小麦 文献[4]
    + 0.1 0.01、0.1、1、10 小麦 文献[49]
    + 0.1 1、10 生菜/萝卜 × 文献[50]
    + 羧基 0.1 0.1、1、10 水稻 × 文献[51]
    + 0.08、1 40 水稻 文献[52]
    + 0.098 0.16、0.8、4、20、100 水蕨 NM 文献[53]
    0.05 100、1 000 水稻 文献[54]
    铕(Eu) 0.2 0.02~500 生菜/小麦 文献[55]
    0.2 25 白菜 文献[56]
    土培 + 羧基 281) 10、100 绿豆 NM 文献[57]
    + 0.2 500 小麦 × 文献[4]
    + 0.2 500 小麦 文献[48]
    铕(Eu) 0.2 1、10 生菜 文献[55]
    + 0.02 20、40 豌豆 文献[58]
    PMMA 水培 + 0.096 75±0.058 2 000 大麦 × 文献[59]
      注:+表示有该种处理;-表示无该种处理;√表示已观察到微塑料吸收;×表示未观察到微塑料吸收;NM表示未进行微塑料吸收情况观察。PS为聚苯乙烯;PMMA为聚甲基丙烯酸甲酯。1)单位为nm。
    下载: 导出CSV
  • [1] GEWERT B, PLASSMANN M M, MacLEOD M. Pathways for degradation of plastic polymers floating in the marine environment[J]. Environmental Science Processes & Impacts,2015,17(9):1513-1521.
    [2] SUN Y R, YUAN J H, ZHOU T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: a systematic review[J]. Environmental Pollution,2020,265:114864. doi: 10.1016/j.envpol.2020.114864
    [3] 钱亚茹, 石磊磊, 沈茜, 等. 淡水环境中微塑料污染及毒性效应研究进展[J]. 环境工程技术学报,2022,12(4):1096-1104.

    QIAN Y R, SHI L L, SHEN Q, et al. Research progress on pollution and toxic effects of microplastics in freshwater environment[J]. Journal of Environmental Engineering Technology,2022,12(4):1096-1104.
    [4] LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability,2020,3:929-937. doi: 10.1038/s41893-020-0567-9
    [5] 刘彬, 侯立安, 王媛, 等. 我国海洋塑料垃圾和微塑料排放现状及对策[J]. 环境科学研究,2020,33(1):174-182.

    LIU B, HOU L A, WANG Y, et al. Emission estimate and countermeasures of marine plastic debris and microplastics in China[J]. Research of Environmental Sciences,2020,33(1):174-182.
    [6] KUNDU A, SHETTI N P, BASU S, et al. Identification and removal of micro- and nano-plastics: efficient and cost-effective methods[J]. Chemical Engineering Journal,2021,421:129816. doi: 10.1016/j.cej.2021.129816
    [7] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution,2020,260:114096. doi: 10.1016/j.envpol.2020.114096
    [8] 赵岩, 陈学庚, 温浩军, 等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报,2017,48(6):1-14.

    ZHAO Y, CHEN X G, WEN H J, et al. Research status and prospect of control technology for residual plastic film pollution in farmland[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(6):1-14.
    [9] GALLOWAY T S, COLE M, LEWIS C. Interactions of microplastic debris throughout the marine ecosystem[J]. Nature Ecology & Evolution,2017,1:116.
    [10] DAWSON A L, KAWAGUCHI S, KING C K, et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill[J]. Nature Communications,2018,9:1001. doi: 10.1038/s41467-018-03465-9
    [11] WEITHMANN N, MÖLLER J N, LÖDER M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances,2018,4(4):8060. doi: 10.1126/sciadv.aap8060
    [12] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology,2016,50(5):2685-2691.
    [13] AMBROSINI R, AZZONI R S, PITTINO F, et al. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier[J]. Environmental Pollution,2019,253:297-301. doi: 10.1016/j.envpol.2019.07.005
    [14] O'CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution,2019,249:527-534. doi: 10.1016/j.envpol.2019.03.092
    [15] 朱莹, 曹淼, 罗景阳, 等. 微塑料的环境影响行为及其在我国的分布状况[J]. 环境科学研究,2019,32(9):1437-1447.

    ZHU Y, CAO M, LUO J Y, et al. Distribution and potential risks of microplastics in China: a review[J]. Research of Environmental Sciences,2019,32(9):1437-1447.
    [16] BHATT P, PATHAK V M, BAGHERI A R, et al. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies[J]. Environmental Research,2021,200:111762. doi: 10.1016/j.envres.2021.111762
    [17] GATIDOU G, ARVANITI O S, STASINAKIS A S. Review on the occurrence and fate of microplastics in Sewage Treatment Plants[J]. Journal of Hazardous Materials,2019,367:504-512. doi: 10.1016/j.jhazmat.2018.12.081
    [18] CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research,2016,91:174-182. doi: 10.1016/j.watres.2016.01.002
    [19] BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. Science of the Total Environment,2018,612:422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [20] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution,2018,242:855-862. doi: 10.1016/j.envpol.2018.07.051
    [21] WU X L, LYU X Y, LI Z Y, et al. Transport of polystyrene nanoplastics in natural soils: effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment,2020,707:136065. doi: 10.1016/j.scitotenv.2019.136065
    [22] TYMPA L E, KATSARA K, MOSCHOU P N, et al. Do microplastics enter our food chain via root vegetables: a Raman based spectroscopic study on Raphanus sativus[J]. Materials,2021,14(9):2329. doi: 10.3390/ma14092329
    [23] HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: a source of microplastics: evidence of microplastics in landfill leachate[J]. Water Research,2019,159:38-45. doi: 10.1016/j.watres.2019.04.060
    [24] WONG J K H, LEE K K, TANG K H D, et al. Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment,2020,719:137512. doi: 10.1016/j.scitotenv.2020.137512
    [25] LUO Y Y, ZHANG Y Y, XU Y B, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties[J]. Science of the Total Environment,2020,726:138389. doi: 10.1016/j.scitotenv.2020.138389
    [26] LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology,2019,53(10):5805-5815.
    [27] 张佳佳, 陈延华, 王学霞, 等. 土壤环境中微塑料的研究进展[J]. 中国生态农业学报(中英文),2021,29(6):937-952.

    ZHANG J J, CHEN Y H, WANG X X, et al. A review of microplastics in the soil environment[J]. Chinese Journal of Eco-Agriculture,2021,29(6):937-952.
    [28] DONG Y M, GAO M L, QIU W W, et al. Uptake of microplastics by carrots in presence of As(Ⅲ): combined toxic effects[J]. Journal of Hazardous Materials,2021,411:125055. doi: 10.1016/j.jhazmat.2021.125055
    [29] WANG Y, XIANG L L, WANG F, et al. Positively charged microplastics induce strong lettuce stress responses from physiological, transcriptomic, and metabolomic perspectives[J]. Environmental Science & Technology,2022,56:16907-16918.
    [30] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere,2019,226:774-781. doi: 10.1016/j.chemosphere.2019.03.163
    [31] YU Z F, SONG S, XU X L, et al. Sources, migration, accumulation and influence of microplastics in terrestrial plant communities[J]. Environmental and Experimental Botany,2021,192:104635. doi: 10.1016/j.envexpbot.2021.104635
    [32] LI Z X, LI Q F, LI R J, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research,2021,28(13):16042-16053. doi: 10.1007/s11356-020-11702-2
    [33] GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International,2020,137:105263. doi: 10.1016/j.envint.2019.105263
    [34] YU M, van der PLOEG M, LWANGA E H, et al. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows[J]. Environmental Chemistry,2019,16(1):31. doi: 10.1071/EN18161
    [35] HUANG D F, XU Y B, YU X Q, et al. Effect of cadmium on the sorption of tylosin by polystyrene microplastics[J]. Ecotoxicology and Environmental Safety,2021,207:111255. doi: 10.1016/j.ecoenv.2020.111255
    [36] de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology,2019,53(10):6044-6052.
    [37] LI H Z, ZHU D, LINDHARDT J H, et al. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem[J]. Environmental Science & Technology,2021,55(8):4658-4668.
    [38] WANG T, WANG L, CHEN Q Q, et al. Interactions between microplastics and organic pollutants: effects on toxicity, bioaccumulation, degradation, and transport[J]. Science of the Total Environment,2020,748:142427. doi: 10.1016/j.scitotenv.2020.142427
    [39] de SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology,2018,52(17):9656-9665.
    [40] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology,2019,53(19):11496-11506.
    [41] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment[J]. Science of the Total Environment,2019,670:1-7. doi: 10.1016/j.scitotenv.2019.03.149
    [42] HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution,2019,254:112983. doi: 10.1016/j.envpol.2019.112983
    [43] ZHOU C Q, LU C H, MAI L, et al. Response of rice (Oryza sativa L. ) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials,2021,401:123412. doi: 10.1016/j.jhazmat.2020.123412
    [44] ZHANG Q G, ZHAO M S, MENG F S, et al. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity[J]. Toxics,2021,9(8):179. doi: 10.3390/toxics9080179
    [45] SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology,2020,15:755-760. doi: 10.1038/s41565-020-0707-4
    [46] GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry,2020,149:170-177. doi: 10.1016/j.plaphy.2020.02.014
    [47] JIANG X, CHEN H, LIAO Y, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution,2019,250:831-838. doi: 10.1016/j.envpol.2019.04.055
    [48] LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin,2019,64(9):928-934. doi: 10.1360/N972018-00845
    [49] LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L. )[J]. Journal of Hazardous Materials,2020,385:121620. doi: 10.1016/j.jhazmat.2019.121620
    [50] GONG W W, ZHANG W, JIANG M Y, et al. Species-dependent response of food crops to polystyrene nanoplastics and microplastics[J]. Science of the Total Environment,2021,796:148750. doi: 10.1016/j.scitotenv.2021.148750
    [51] WU J N, LIU W T, ZEB A, et al. Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism[J]. Environmental Science:Nano,2021,8(12):3699-3710. doi: 10.1039/D1EN00636C
    [52] LIU Y Y, GUO R, ZHANG S W, et al. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment[J]. Journal of Hazardous Materials,2022,421:126700. doi: 10.1016/j.jhazmat.2021.126700
    [53] YUAN W K, ZHOU Y F, LIU X N, et al. New perspective on the nanoplastics disrupting the reproduction of an endangered fern in artificial freshwater[J]. Environmental Science & Technology,2019,53(21):12715-12724.
    [54] SPANÒ C, MUCCIFORA S, RUFFINI CASTIGLIONE M, et al. Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: evidence of their internalization and translocation[J]. Plant Physiology and Biochemistry,2022,172:158-166. doi: 10.1016/j.plaphy.2022.01.012
    [55] LUO Y M, LI L Z, FENG Y D, et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer[J]. Nature Nanotechnology,2022,17:424-431. doi: 10.1038/s41565-021-01063-3
    [56] ZHANG P P, WANG Y Q, ZHAO X Z, et al. Surface-enhanced Raman scattering labeled nanoplastic models for reliable bio-nano interaction investigations[J]. Journal of Hazardous Materials,2022,425:127959. doi: 10.1016/j.jhazmat.2021.127959
    [57] CHAE Y, AN Y J. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects via vascular plants[J]. Environmental Science:Nano,2020,7(3):975-983. doi: 10.1039/C9EN01335K
    [58] KIM D, AN S, KIM L, et al. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil[J]. Journal of Hazardous Materials,2022,436:129194. doi: 10.1016/j.jhazmat.2022.129194
    [59] LI S X, WANG T Y, GU O J H, et al. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley[J]. Journal of Hazardous Materials,2021,415:125614. doi: 10.1016/j.jhazmat.2021.125614
    [60] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊,2018,33(10):1021-1030.

    LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences,2018,33(10):1021-1030.
    [61] ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere[J]. Chinese Science Bulletin,2017,62(33):3902-3909. doi: 10.1360/N972017-00956
    [62] LIU R, LIANG J W, YANG Y H, et al. Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth[J]. Chemosphere,2023,329:138504. doi: 10.1016/j.chemosphere.2023.138504
    [63] PIGNATTELLI S, BROCCOLI A, RENZI M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment,2020,727:138609. doi: 10.1016/j.scitotenv.2020.138609
    [64] BI M H, HE Q, CHEN Y. What roles are terrestrial plants playing in global microplastic cycling[J]. Environmental Science & Technology,2020,54(9):5325-5327.
    [65] HOLMES L A, TURNER A, THOMPSON R C. Interactions between trace metals and plastic production pellets under estuarine conditions[J]. Marine Chemistry,2014,167:25-32. doi: 10.1016/j.marchem.2014.06.001
    [66] WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere,2020,254:126791. doi: 10.1016/j.chemosphere.2020.126791
    [67] LAHIVE E, CROSS R, SAARLOOS A I, et al. Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention[J]. Science of the Total Environment,2022,807:151022. doi: 10.1016/j.scitotenv.2021.151022
    [68] LI B, SONG W H, CHENG Y L, et al. Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida[J]. Science of the Total Environment,2021,783:147007. doi: 10.1016/j.scitotenv.2021.147007
    [69] WANG H T, DING J, XIONG C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica[J]. Environmental Pollution,2019,251:110-116. doi: 10.1016/j.envpol.2019.04.054
    [70] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment,2020,707:135634. doi: 10.1016/j.scitotenv.2019.135634
    [71] JUDY J D, KIRBY J K, CREAMER C, et al. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil[J]. Environmental Pollution,2015,206:256-263. doi: 10.1016/j.envpol.2015.07.002
    [72] NDAHEBWA MUHONJA C, MAGOMA G, IMBUGA M, et al. Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from dandora dumpsite, Nairobi, Kenya[J]. International Journal of Microbiology,2018:4167845.
    [73] VIMALA P P, MATHEW L. Biodegradation of polyethylene using Bacillus subtilis[J]. Procedia Technology,2016,24:232-239. doi: 10.1016/j.protcy.2016.05.031
    [74] YADAV V, DHANGER S, SHARMA J. Microplastics accumulation in agricultural soil: evidence for the presence, potential effects, extraction, and current bioremediation approaches[J]. Journal of Applied Biology & Biotechnology, 2022: 38-47.
    [75] HAN X, LIU W D, HUANG J W, et al. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications,2017,8:2106. doi: 10.1038/s41467-017-02255-z
    [76] WANG J, SUN C, HUANG Q X, et al. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars[J]. Journal of Hazardous Materials,2021,419:126486. doi: 10.1016/j.jhazmat.2021.126486
    [77] LI J, YU Y F, CHEN X H, et al. Effects of biochar on the phytotoxicity of polyvinyl chloride microplastics[J]. Plant Physiology and Biochemistry,2023,195:228-237. doi: 10.1016/j.plaphy.2023.01.022
    [78] HAN L F, CHEN L Y, LI D T, et al. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission[J]. Environmental Pollution,2022,292:118386. doi: 10.1016/j.envpol.2021.118386
    [79] 陈斐杰, 夏会娟, 刘福德, 等. 生物质炭特性及其对土壤性质的影响与作用机制[J]. 环境工程技术学报,2022,12(1):161-172. doi: 10.12153/j.issn.1674-991X.20210067

    CHEN F J, XIA H J, LIU F D, et al. Characteristics of biochar and its effects and mechanism on soil properties[J]. Journal of Environmental Engineering Technology,2022,12(1):161-172. □ doi: 10.12153/j.issn.1674-991X.20210067
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  108
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 录用日期:  2024-03-01
  • 修回日期:  2024-02-02

目录

    /

    返回文章
    返回