Research on the evaluation of low-carbon development level of industrial parks under carbon peak and carbon neutrality target: taking A park in East China as an example
-
摘要:
“双碳”目标下工业园区低碳发展的需求愈发紧迫,科学合理地评价工业园区低碳发展水平是促进工业园区低碳发展的关键一步。从低碳产业、能源资源利用、减污降碳、低碳基础设施、长效管理5个层面选取24个指标构建工业园区低碳发展评价指标体系,采用层次分析法结合改进CRITIC法(基于指标相关性的权重确定法)为指标赋权,运用TOPSIS(优劣解距离法)-灰色关联分析模型和障碍度模型分析了2018—2022年华东地区A园区的低碳发展水平与障碍因子。结果表明:2018—2022年A园区低碳发展水平呈逐年上升趋势,其中低碳产业、能源资源利用、长效管理准则的低碳发展趋势向好,而减污降碳、低碳基础设施准则的低碳发展受阻。从障碍度角度看,准则层中减污降碳和能源资源利用是制约A园区低碳发展水平提高的关键障碍因素,其中单位工业增加值碳排放量、单位工业增加值综合能耗、工业用水重复利用率、单位工业增加值废水排放量、新建工业建筑中绿色建筑比例的阻碍作用较为突出。
Abstract:Under the goal of carbon peak and carbon neutrality, the demand for low-carbon development of industrial parks is becoming more and more urgent. Scientific and reasonable evaluation of the low-carbon development level of industrial parks is a key step to promote the low-carbon development of industrial parks. From the five levels of low-carbon industry, energy resource utilization, pollution reduction and carbon reduction, low-carbon infrastructure, and long-term management, 24 indicators were selected to construct a low-carbon development evaluation index system for industrial parks. The analytic hierarchy process (AHP) combined with the improved criteria importance through intercriteria correlation (CRITIC) method was used to assign weights to indicators, and the technique for order preference by similarity to ideal solution (TOPSIS) - grey correlation analysis model and obstacle degree model were used to analyze the low-carbon development level and obstacle factors of A park in East China from 2018 to 2022. The results showed that the low-carbon development level of A park was increasing year by year from 2018 to 2022, among which the low-carbon development trend of low-carbon industry, energy resource utilization and long-term management criteria was better, while the low-carbon development of pollution reduction and low-carbon infrastructure criteria was hindered. From the perspective of obstacle degree, pollution reduction and carbon reduction, and energy resource utilization in the criterion layer were the key obstacle factors restricting the improvement of the low-carbon development level of A park. Among them, the carbon emission per unit of industrial added value, the comprehensive energy consumption per unit of industrial added value, the reuse rate of industrial water, the wastewater discharge per unit of industrial added value, and the proportion of green buildings in new industrial buildings were more prominent.
-
Key words:
- industrial park /
- index system /
- low-carbon development /
- TOPSIS /
- obstacle degree
-
表 1 工业园区低碳发展评价指标体系
Table 1. Evaluation index system for low-carbon development of industrial parks
一级指标 二级指标 三级指标 正负性 类型 权重 工业园区低碳
发展水平(A)低碳产业(B1) 园区工业增加值增速(C1) 正 二选一 0.021 2 人均工业增加值(C1) 正 绿色产业增加值占工业增加值的比例(C2) 正 二选一 0.060 0 高新技术企业工业总产值占园区工业总产值比例(C2) 正 能源资源利用(B2) 单位工业增加值综合能耗(C3) 负 必选 0.074 1 可再生能源使用比例(C4) 正 二选一 0.096 4 煤炭消费总量下降率(C4) 正 能源技术应用情况(C5) 正 必选 0.050 7 工业用水重复利用率(C6) 正 必选 0.060 0 工业固体废物综合利用率(C7) 正 必选 0.033 0 减污降碳(B3) 园区二氧化碳排放量下降率(C8) 正 必选 0.060 0 单位工业增加值碳排放量(C9) 负 必选 0.096 4 单位工业增加值碳排放量下降率(C10) 正 必选 0.096 4 主要污染物排放弹性系数(C11) 正/负1) 必选 0.033 0 单位工业增加值废水排放量(C12) 负 必选 0.042 8 低碳基础设施(B4) 绿化覆盖率(C13) 正 必选 0.021 2 节能与新能源公交车比例(C14) 正 必选 0.032 8 新建工业建筑中绿色建筑的比例(C15) 正 二选一 0.033 0 新建公共建筑中绿色建筑的比例(C15) 正 污水集中处理设施(C16) 正 必选 0.042 8 长效管理(B5) 重点企业环境信息公开率(C17) 正 必选 0.008 6 企业清洁生产审核实施率(C18) 正 必选 0.021 2 购买绿电或碳抵消(C19) 正 必选 0.012 7 能源在线监测平台(C20) 正 必选 0.032 8 碳排放管理能力完善度(C21) 正 必选 0.032 8 编制低碳发展规划或碳达峰行动方案(C22) 正 必选 0.021 2 绿色低碳信息平台完善程度(C23) 正 必选 0.010 9 绿色低碳主题宣传活动(C24) 正 必选 0.006 0 1)当工业增加值年均增长率大于0时,为负向;当工业增加值年均增长率小于0时,为正向。 表 2 各项指标的标杆值及来源
Table 2. Benchmark values and sources of various indicators
三级指标 标杆值 来源 三级指标 标杆值 来源 园区工业增加值增速(C1) 15% 《山东省省级生态工业园区管理办法》(2022年) 节能与新能源公交车比例(C14) 30% 《浙江省绿色低碳工业园区建设评价导则》(2022年) 人均工业增加值(C1) 20万元/人 T/CIECCPA 010—2023《工业园区绿色低碳评价导则》 新建工业建筑中绿色
建筑的比例(C15)30% 《浙江省绿色低碳工业园区建设评价导则》(2022年) 绿色产业增加值占工业增加值的比例(C2) 45% 《江苏省省级生态工业园区建设规范(征求意见稿)》(2021年) 新建公共建筑中绿色
建筑的比例(C15)60% 高新技术企业工业总产值占园区工业总产值比例(C2) 45% 污水集中处理设施(C16) 1分 HJ 274—2015《国家生态工业示范园区标准》
(具备得1分,反之0分1))单位工业增加值综合能耗(C3) 0.33 t/万元 DB21/T 3662—2022《绿色工业园区评价规范》 可再生能源使用比例(C4) 15% 《绿色园区评价要求》(2016年) 重点企业环境信息公开率(C17) 100% HJ 274—2015《国家生态工业示范园区标准》 煤炭消费总量下降率(C4) 2% 《“十四五”节能减排综合工作方案》 企业清洁生产审核实施率(C18) 100% HJ 274—2015《国家生态工业示范园区标准》 能源技术应用情况(C5) 1分 T/ACEF 038—2022《工业园区碳中和评价方法》 购买绿电或碳抵消(C19) 1分 《深圳近零碳排放园区试点主要指标体系》(2021年)
(具备得1分,反之0分1))(每应用1例,得0.1分,
满分1分1))工业用水重复利用率(C6) 90% 《浙江省绿色低碳工业园区建设评价导则》(2022年) 能源在线监测平台(C20) 1分 T/CSPSTC 51—2020《智慧零碳工业园区设计和
评价技术指南》
(具备得1分,反之0分1))工业固体废物综合利用率(C7) 95% DB31/T 946—2021《绿色工业园区评价导则》 园区二氧化碳排放量下降率(C8) 0% 《成都市近零碳排放园区试点建设评价指标》(2022年) 碳排放管理能力完善度(C21) 1分 T/CSPSTC 51—2020《智慧零碳工业园区设计和
评价技术指南》
(根据完善程度在0~1
之间打分1))单位工业增加值碳排放量(C9) 0.35 t/万元 T/CSPSTC 51—2020《智慧零碳工业园区设计和评价技术指南》 单位工业增加值碳排放量
下降率(C10)5% 《“十四五”工业绿色
发展规划》
SZDB/Z 308—2018《低碳园区评价指南》编制低碳发展规划或碳达峰
行动方案(C22)1分 《浙江省绿色低碳工业园区建设评价》(2022年)
(具备得1分,反之0分1))主要污染物排放弹性系数(C11) 0.3 HJ 274—2015《国家生态工业示范园区标准》 单位工业增加值废水排放量(C12) 5 t/万元 《绿色园区评价要求》(2016年) 绿色低碳信息平台
完善程度(C23)1分 HJ 274—2015《国家生态工业示范园区标准》
(根据完善程度在0~1
之间打分1))绿化覆盖率(C13) 30% DB31/T 946—2021《绿色工业园区评价导则》 绿色低碳主题宣传活动(C24) 1分 HJ 274—2015《国家生态工业示范园区标准》
(具备得1分,反之0分1))1)定性指标的定量化方法。 表 3 2018—2022年A园区低碳发展评价指标层主要障碍因子、障碍度及其排序
Table 3. Main obstacle factors, degree of obstacle and their ranking in the evaluation index layer of low-carbon development in A park from 2018 to 2022
排序 项目 年份 2018 2019 2020 2021 2022 1 障碍因素 C4 C9 C9 C9 C9 障碍度/% 16.52 18.37 19.51 19.70 21.14 2 障碍因素 C9 C3 C3 C3 C3 障碍度/% 15.32 11.40 11.66 10.93 10.10 3 障碍因素 C3 C6 C6 C6 C15 障碍度/% 10.32 8.52 8.99 10.66 8.84 4 障碍因素 C6 C12 C12 C12 C11 障碍度/% 7.00 7.93 8.33 8.32 8.84 5 障碍因素 C12 C15 C15 C15 C14 障碍度/% 6.48 7.06 7.66 7.97 8.79 -
[1] 谢华生, 常文韬, 樊在义, 等. 生态工业园低碳发展的指标与途径[J]. 中国环保产业,2010(10):42-45. doi: 10.3969/j.issn.1006-5377.2010.10.010XIE H S, CHANG W T, FAN Z Y, et al. Indicators and approaches of low-carbon development in eco-industrial parks[J]. China Environmental Protection Industry,2010(10):42-45. doi: 10.3969/j.issn.1006-5377.2010.10.010 [2] 伍肆, 周宁, 王松林. 基于模糊评价集的工业园区低碳评价体系构建[J]. 中国人口·资源与环境,2013,23(增刊2):276-279.WU S, ZHOU N, WANG S L. Establishment of low-carbon industrial parks evaluation system by fuzzy comprehensive evaluation set[J]. China Population, Resources and Environment,2013,23(Suppl 2):276-279. [3] 周娟. 低碳工业园区评价指标体系研究[D]. 武汉: 华中科技大学, 2013. [4] 李晓静. 青岛市工业园区低碳发展评价与对策研究[D]. 青岛: 青岛科技大学, 2015. [5] 马桂华. 广西工业园区低碳评价指标体系研究[D]. 南宁: 广西师范学院, 2017. [6] 霍震. 江苏省低碳园区评价指标体系研究[J]. 中国资源综合利用,2018,36(8):108-110. doi: 10.3969/j.issn.1008-9500.2018.08.036HUO Z. Explore the evaluation system of low-carbon industrial parks in Jiangsu Province[J]. China Resources Comprehensive Utilization,2018,36(8):108-110. doi: 10.3969/j.issn.1008-9500.2018.08.036 [7] LIU X, LIU H, CHEN J, et al. Evaluating the sustainability of marine industrial parks based on the dpsir framework[J]. Journal of Cleaner Production,2018,188:158-170. doi: 10.1016/j.jclepro.2018.03.271 [8] 张明博, 于梓涵, 高照琴, 等. “两高”产业园区规划环境影响评价指标体系构建研究[J]. 环境工程技术学报,2022,12(6):1788-1795. doi: 10.12153/j.issn.1674-991X.20220558ZHANG M B, YU Z H, GAO Z Q, et al. Development of the environmental impact assessment (EIA) index system for high-pollution and energy-intensive industrial park planning[J]. Journal of Environmental Engineering Technology,2022,12(6):1788-1795. doi: 10.12153/j.issn.1674-991X.20220558 [9] 王晶晶. 武汉市低碳产业园区指标体系研究[D]. 武汉: 湖北工业大学, 2016. [10] 郑倩婧. 低碳城市建设成熟度评价研究[D]. 重庆: 重庆大学, 2018. [11] 邢雅囡, 冯彬. 江苏省工业园区绿色发展评价方法及其应用[J]. 环境保护科学,2019,45(6):39-43.XING Y N, FENG B. An evaluation method and its application of green development for the industrial parks in Jiangsu Province[J]. Environmental Protection Science,2019,45(6):39-43. [12] 熊向艳, 韩永伟, 孟晓杰, 等. 黄河流域国家生态文明建设示范区发展水平测度及其时空差异[J]. 环境工程技术学报,2023,13(4):1304-1314. doi: 10.12153/j.issn.1674-991X.20220805XIONG X Y, HAN Y W, MENG X J, et al. Measurement of the development level and spatial-temporal differences of the National Ecological Civilization Construction Demonstration Areas in the Yellow River basin[J]. Journal of Environmental Engineering Technology,2023,13(4):1304-1314. doi: 10.12153/j.issn.1674-991X.20220805 [13] SUN F, LUO Y, SHEN J. Research on drainage rights allocation based on game combination weight-improved matter-element extension model[J]. Water,2023,15(11):2044. doi: 10.3390/w15112044 [14] 杨占斌, 徐亚. 建设项目对文物遗迹综合环境影响的组合赋权方法研究[J]. 环境工程技术学报,2019,9(3):320-324. doi: 10.12153/j.issn.1674-991X.2018.11.070YANG Z B, XU Y. A combination weighting method to evaluate the comprehensive environmental influence of construction project on cultural heritage[J]. Journal of Environmental Engineering Technology,2019,9(3):320-324. doi: 10.12153/j.issn.1674-991X.2018.11.070 [15] 向治锦, 张庆, 吕庆, 等. 锌冶炼用氧化锌富集物再生综合效益评价[J]. 环境工程技术学报,2022,12(4):1245-1252. doi: 10.12153/j.issn.1674-991X.20210441XIANG Z J, ZHANG Q, LÜ Q, et al. Comprehensive benefit evaluation of zinc oxide enrichment regeneration for zinc smelting[J]. Journal of Environmental Engineering Technology,2022,12(4):1245-1252. doi: 10.12153/j.issn.1674-991X.20210441 [16] SHEN L, ZHANG Y, YAO M, et al. Combination weighting integrated with topsis for landscape performance evaluation: a case study of microlandscape from rural areas in southeast China[J]. Sustainability,2022,14(15):9794. doi: 10.3390/su14159794 [17] 杨敏慧, 袁培炎, 罗天烈, 等. 基于层次分析法评估长江上游宜宾段工业园区环境风险[J]. 环境工程技术学报,2022,12(2):624-632. doi: 10.12153/j.issn.1674-991X.20210683YANG H M, YUAN P Y, LUO T L, et al. Assessment of the environmental risk of the industrial parks of Yibin section of the upper reaches of the Yangtze River based on analytic hierarchy process[J]. Journal of Environmental Engineering Technology,2022,12(2):624-632. doi: 10.12153/j.issn.1674-991X.20210683 [18] 易文杰, 李庄, 罗竹燕, 等. 水泥行业环境影响评价低碳技术选择与应用[J]. 环境工程技术学报,2022,12(6):1905-1914. doi: 10.12153/j.issn.1674-991X.20220590YI W J, LI Z, LUO Z Y, et al. Selection and application of low carbon technologies in environmental impact assessment of cement industry[J]. Journal of Environmental Engineering Technology,2022,12(6):1905-1914. doi: 10.12153/j.issn.1674-991X.20220590 [19] ROSTAMZADEH R, GHORABAEE M K, GOVINDAN K, et al. Evaluation of sustainable supply chain risk management using an integrated fuzzy topsis-critic approach[J]. Journal of Cleaner Production,2018,175:651-669. doi: 10.1016/j.jclepro.2017.12.071 [20] 张立军, 张潇. 基于改进CRITIC法的加权聚类方法[J]. 统计与决策,2015(22):65-68. [21] 刘淑茹, 魏晓晓. 基于改进CRITIC法的西部地区新型城镇化水平测度[J]. 生态经济,2019,35(7):98-102.LIU S R, WEI X X. Measurement of new urbanization level in western china based on improved CRITIC method[J]. Ecological Economy,2019,35(7):98-102. [22] 刘传修, 张菁, 刘小康, 等. 基于IVIF-AHP与改进CRITIC法的配电网规划方案综合评估[J]. 控制工程,2022,29(2):322-329.LIU C X, ZHANG J, LIU X K, et al. Comprehensive evaluation of distribution network planning scheme based on IVIF-AHP and improved CRITIC method[J]. Control Engineering of China,2022,29(2):322-329. [23] 李刚, 李建平, 孙晓蕾, 等. 主客观权重的组合方式及其合理性研究[J]. 管理评论,2017,29(12):17-26.LI G, LI J P, SUN X L, et al. Research on a combined method of subjective-objective weighing and the its rationality[J]. Management Review,2017,29(12):17-26. [24] 李刚, 李建平, 孙晓蕾, 等. 兼顾序信息和强度信息的主客观组合赋权法研究[J]. 中国管理科学,2017,25(12):179-187.LI G, LI J P, SUN X L, et al. Research on a combined method of subjective-objective weighting based on the ordered information and intensity information[J]. Chinese Journal of Management Science,2017,25(12):179-187. [25] 阚剑锋, 蒋栋辉, 侯茂林, 等. 高铁车站新线引入施工与车站工作组织协同评价研究[J]. 中国铁路,2022(11):115-122.KAN J F, JIANG D H, HOU M L, et al. Research on synergetic evaluation of new line introduction and station operation organization of high speed railway station[J]. China Railway,2022(11):115-122. [26] 黄亚江, 李书全, 项思思. 基于AHP-PSO模糊组合赋权法的地铁火灾安全韧性评估[J]. 灾害学,2021,36(3):15-20. doi: 10.3969/j.issn.1000-811X.2021.03.004HUANG Y J, LI S Q, XIANG S S. Evaluation of subway fire safety resilience based on AHP-PSO fuzzy combination weighting method[J]. Journal of Catastrophology,2021,36(3):15-20. doi: 10.3969/j.issn.1000-811X.2021.03.004 [27] 张群淑. 考虑全生命周期的深圳港绿色竞争力研究[D]. 大连: 大连海事大学, 2021. [28] DING L, SHAO Z, ZHANG H, et al. A comprehensive evaluation of urban sustainable development in China based on the topsis-entropy method[J]. Sustainability,2016,8(8):746. doi: 10.3390/su8080746 [29] 武春友, 郭玲玲, 于惊涛. 基于TOPSIS-灰色关联分析的区域绿色增长系统评价模型及实证[J]. 管理评论,2017,29(1):228-239.WU C Y, GUO L L, YU J T. Evaluation model and empirical study of regional green growth system based on TOPSIS and grey relational analysis[J]. Management Review,2017,29(1):228-239. [30] 李海东, 王帅, 刘阳. 基于灰色关联理论和距离协同模型的区域协同发展评价方法及实证[J]. 系统工程理论与实践,2014,34(7):1749-1755. doi: 10.12011/1000-6788(2014)7-1749LI H D, WANG S, LIU Y. Evaluation method and empirical research of regional synergetic development degree based on grey relational theory and distance collaborative model[J]. Systems Engineering-Theory & Practice,2014,34(7):1749-1755. doi: 10.12011/1000-6788(2014)7-1749 [31] 李刚, 李双元, 平建硕. 基于改进熵值TOPSIS灰色关联度模型的青海省乡村振兴评价及障碍因子分析[J]. 中国农业资源与区划,2021,42(12):115-123.LI G, LI S Y, PING J S. Evaluation and obstacle factor analysis of rural revitalization in Qinghai Province based on improved entropy topsis gray correlayion model[J]. Chinese Journal of Agricultural Resources and Regional Planning,2021,42(12):115-123. [32] 许杨, 陈菁, 夏欢, 等. 基于DPSR-改进TOPSIS模型的淮安市水资源承载力评价[J]. 水资源与水工程学报,2019,30(4):47-52.XU Y, CEHN J, XIA H. Evaluation of water resource carrying capacity in Huaian City based on DPSR- improved TOPSIS model[J]. Journal of Water Resources & Water Engineering,2019,30(4):47-52. [33] 陈志霞, 徐杰. 基于TOPSIS与灰色关联分析的城市幸福指数评价[J]. 统计与决策,2021,37(9):59-62. [34] 王利利, 贾梦雨, 韩松, 等. 基于TOPSIS-灰色关联度的农网投资效益与风险能力综合评价[J]. 电力科学与技术学报,2020,35(4):76-83.WANG L L, JIA M Y, HAN S, et al. Synthesized evaluation of investment efficiency and risk ability of rural network based on TOPSIS-gray incidence[J]. Journal of Electric Power Science and Technology,2020,35(4):76-83. [35] 刘启君, 黄旻, 宋艺欣, 等. 基于灰色关联TOPSIS模型的武汉市环境承载力评价及障碍因子诊断[J]. 生态经济,2016,32(5):191-195. doi: 10.3969/j.issn.1671-4407.2016.05.038LIU Q J, HUANG M, SONG Y X, et al. Evaluation on environmental carrying capacity of Wuhan City based on the gray correlation TOPSIS method and diagnosis of its obstacle indicators[J]. Ecological Economy,2016,32(5):191-195. doi: 10.3969/j.issn.1671-4407.2016.05.038 [36] 乐晖, 金文龙, 陈亢利. 长三角地区生态承载力评价: 以苏州市为例[J]. 环境工程技术学报,2023,13(2):725-732. doi: 10.12153/j.issn.1674-991X.20210654YUE H, JIN W L, CHEN K L. Evaluation of ecological carrying capacity in Yangtze River Delta: a case study of Suzhou City[J]. Journal of Environmental Engineering Technology,2023,13(2):725-732. doi: 10.12153/j.issn.1674-991X.20210654 [37] 徐志青, 刘雪瑜, 肖书虎, 等. 珠江三角洲地区水环境承载力评价及障碍因素研究[J]. 环境工程技术学报,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007XU Z Q, LIU X Y, XIAO S H, et al. Evaluation and obstacle factors study of water environmental carrying capacity in the Pearl River Delta[J]. Journal of Environmental Engineering Technology,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007 [38] 王君萍, 刘亚倩, 李善燊. “双碳”目标下区域绿色金融发展时空特征及障碍因子诊断[J]. 生态经济,2022,38(10):53-61.WANG J P, LIU Y Q, LI S S. Spatio-temporal characteristics and diagnosis of obstacle factors of regional green finance development under the "double carbon" goal[J]. Ecological Economy,2022,38(10):53-61. [39] 雷勋平, QIU R. 基于熵权TOPSIS模型的中国粮食安全评价及障碍因子诊断[J]. 中国农业大学学报,2022,27(12):1-14. doi: 10.11841/j.issn.1007-4333.2022.12.01LEI X P, QIU R. Evaluation of food security in China based on entropy TOPSIS model and the diagnosis of its obstacle factors[J]. Journal of China Agricultural University,2022,27(12):1-14. doi: 10.11841/j.issn.1007-4333.2022.12.01 [40] XIANG K, ZHENG N, CHEN J, et al. Evaluation and obstacle degree analysis of low-carbon development level in Fujian Province: based on entropy weight topsis method[J]. Frontiers in Energy Research,2022,10:948893. doi: 10.3389/fenrg.2022.948893 [41] 毛峥. 后疫情时代, 产业园区何去何从: 2020年产业园区发展报告[J]. 中国科技产业,2021(2):47-49. [42] 宁晓刚. 太原市高新区低碳评价指标体系研究[D]. 太原: 山西大学, 2015. [43] 胡恩生. 江西省工业园区低碳化发展路径研究[D]. 南昌: 江西师范大学, 2015. [44] 商婕, 曾悦. 绿色经济理念的生态工业园区综合评价指标体系[J]. 华侨大学学报(自然科学版),2015,36(6):698-703.SHANG J, ZENG Y. Reserch on comprehensive evaluation of eco-industrial parks based on green economy[J]. Journal of Huaqiao University (Natural Science),2015,36(6):698-703. ⊕