留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文献计量学的环境领域有机磷农药研究热点和趋势分析

周摇 张新伟 谢晓琳 钱锋 宋永会

周摇,张新伟,谢晓琳,等.基于文献计量学的环境领域有机磷农药研究热点和趋势分析[J].环境工程技术学报,2024,14(3):1087-1097 doi: 10.12153/j.issn.1674-991X.20230759
引用本文: 周摇,张新伟,谢晓琳,等.基于文献计量学的环境领域有机磷农药研究热点和趋势分析[J].环境工程技术学报,2024,14(3):1087-1097 doi: 10.12153/j.issn.1674-991X.20230759
ZHOU Y,ZHANG X W,XIE X L,et al.Research hotspots and trend analysis of organophosphorus pesticides in the environmental field based on bibliometrics[J].Journal of Environmental Engineering Technology,2024,14(3):1087-1097 doi: 10.12153/j.issn.1674-991X.20230759
Citation: ZHOU Y,ZHANG X W,XIE X L,et al.Research hotspots and trend analysis of organophosphorus pesticides in the environmental field based on bibliometrics[J].Journal of Environmental Engineering Technology,2024,14(3):1087-1097 doi: 10.12153/j.issn.1674-991X.20230759

基于文献计量学的环境领域有机磷农药研究热点和趋势分析

doi: 10.12153/j.issn.1674-991X.20230759
基金项目: 国家重点研发计划项目(2022YF3203302)
详细信息
    作者简介:

    周摇(1997—),女,硕士研究生,主要从事磷污染控制研究,798974039@qq.com

    通讯作者:

    钱锋(1981—),男,副研究员,主要从事氮磷污染控制与资源化研究,qianfeng@craes.org.cn

    宋永会(1967—),男,研究员,主要从事流域水环境治理修复及风险管控技术研究,songyh@craes.org.cn

  • 中图分类号: X592

Research hotspots and trend analysis of organophosphorus pesticides in the environmental field based on bibliometrics

  • 摘要:

    有机磷农药(OPPs)已逐渐取代有机氯农药成为广泛应用的农药之一,其大量使用对环境构成威胁,了解环境领域中OPPs的研究动态与趋势,可为相关领域的科研工作和环境管理提供借鉴。运用文献计量学方法,对2000—2022年中国知网(CNKI)核心数据库和Web of Science(WoS)核心数据库收录的环境领域OPPs的相关文献进行了分析,系统梳理了该领域OPPs的研究现状,阐述了OPPs研究的发展态势及热点前沿,同时提出了未来重点研究方向。结果表明:2000—2022年,国内外关于环境领域OPPs的研究论文共3 427篇,近10年来发文量呈显著上升趋势;环境领域OPPs的研究介质主要是水体和土壤,且对水体中OPPs的环境行为和特性探究更为深入;OPPs的检测手段以气相色谱法为主,毒死蜱〔O,O-二乙基-O-(3,5,6-三氯-2-吡啶基)硫代磷酸酯〕是OPPs研究中出现频率较高的目标污染物之一,且其在环境中的检出率较高;国内外关于OPPs在环境中的研究脉络基本相似,前期研究(2000—2010年)主要集中在环境中OPPs的萃取方法,中期研究(2011—2018年)主要集中在环境中OPPs的危害及对其的环境影响评价,近年来(2019—2022年)研究热点主要集中在OPPs的残留、环境检测以及高效去除等领域。未来建议加强OPPs降解产物的鉴定和环境毒性研究、OPPs复合暴露研究及环境修复研究,同时开发新型纳米材料和绿色农药替代方案等。

     

  • 图  1  CNKI与WoS中2000—2022年环境领域OPPs相关研究历年发文量

    Figure  1.  Changes in the number of publications on OPPs in the environmental field in CNKI and WoS from 2000 to 2022

    图  2  WoS环境领域OPPs研究的关键词共现图谱(不含中国)

    Figure  2.  Keywords and cluster analysis map of research on OPPs in the environmental field (excluding China) in WoS

    图  3  WoS国内环境领域OPPs研究的关键词共现图谱

    Figure  3.  Keywords and cluster analysis map of domestic research on OPPs in the environmental field

    表  1  环境领域OPPs相关研究发文量排名前5的国家(WoS)

    Table  1.   Top 5 countries with OPPspublications (WoS) in the environmental field

    排序国家发文量/篇
    1中国1 058
    2伊朗392
    3西班牙298
    4美国277
    5印度259
    下载: 导出CSV

    表  2  环境领域OPPs相关研究发文量排名前5的机构

    Table  2.   Top 5 institutions with OPPs publications in the environmental field

    排序 WoS CNKI
    机构 发文量/篇 机构 发文量/篇
    1 中国科学院 134 中国科学院 24
    2 埃及科学研究技术院 99 四川大学 10
    3 西班牙高等学术
    研究委员会
    59 南京农业大学 7
    4 大不里士大学 57 中山大学 5
    5 中国农业大学 55 清华大学 5
    下载: 导出CSV

    表  3  环境领域OPPs相关研究发文量排名前5的期刊

    Table  3.   Top 5 journals with OPPs publications in the environmental field

    WoS CNKI
    期刊 发文量/
    2022年影
    响因子(IF)
    期刊 发文量/
    Journal of Chromatography A 207 4.1 《理化检验
    (化学分册)》
    12
    Chemosphere 126 8.8 《中国环境监测》 9
    Analytica Chimica Acta 115 6.2 《环境与健康杂志》 8
    Talanta 98 6.1 《农业环境科学
    学报》
    8
    Journal of Agricultural and Food Chemistry 82 6.1 《农药学学报》 7
    下载: 导出CSV

    表  4  环境领域OPPs相关研究论文被引量排名前5的期刊

    Table  4.   Top 5 cited journals with OPPs publications in the environmental field

    WoS CNKI
    期刊 被引量/篇 2022年影响因子(IF)
    期刊 被引量/篇
    Journal of Chromatography A 1 297 4.1 《中国环境科学》 78
    Chemosphere 1 103 8.8 《土壤通讯》 65
    Environmental Science & Technology 955 11.4 《分析化学》 49
    Journal of Agricultural and Food Chemistry 955 6.1 《环境化学》 39
    Journal of Hazardous Materials 904 13.6 《色谱》 33
    下载: 导出CSV

    表  5  环境领域OPPs相关研究发文量排名前10的作者(WoS)

    Table  5.   Top 10 authors with OPPs publications in the environmental field (WoS)

    作者 发文量/篇 论文总被引次数/次
    Farajzadeh M A 52 1646
    Mogaddam M R A 25 585
    Albanis T A 21 1356
    Wang J 14 616
    Lambropoulou D A 13 796
    Ibrahim W A W 13 425
    Xu Z 12 439
    Wang M 11 428
    Srijaranai S 11 289
    Wang C 11 566
    下载: 导出CSV

    表  6  WoS环境领域OPPs研究频次出现前10的关键词(不含中国)

    Table  6.   Top 10 keywords for frequency of OPPs in the environmental field (excluding China) in WoS

    排序关键词出现频次/次
    英文中文
    1organophosphorus pesticides有机磷农药1 107
    2water527
    3gas chromatography气相色谱法503
    4residues残留308
    5solid phase extraction固相萃取302
    6degradation降解291
    7mass spectrometry质谱219
    8toxicity毒性162
    9chlorpyrifos毒死蜱154
    10soil土壤145
    下载: 导出CSV

    表  7  WoS环境领域OPPs相关研究论文出现频次排名前10的关键词(仅中国)

    Table  7.   Top 10 keywords for frequency of OPPs in the environmental field (China only) in WoS

    排序关键词出现频次/次
    英文中文
    1organophosphorus pesticides有机磷农药573
    2water水体265
    3gas chromatography气相色谱法231
    4residues残留157
    5extraction萃取127
    6mass spectrometry质谱119
    7degradation降解102
    8nanoparticles纳米材料88
    9soil土壤83
    10liquid chromatography液相色谱法66
    下载: 导出CSV

    表  8  2000—2022年WoS环境领域OPPs研究热点演化(不含中国)

    Table  8.   Development of research hotspots of OPPs in the environmental field (excluding China) in WoS from 2000 to 2022

    关键词 突现强度 起始年 终止年 热点演化
    (2000—2022年)
    英文 中文
    water analysis 水分析 21.64 2000 2008 ●●●●●●●●●○○○○○○○
    ○○○○○○○
    pesticide 杀虫剂 15.97 2000 2008 ●●●●●●●●●○○○○○○○
    ○○○○○○○
    environment analysis 环境分析 11.28 2001 2005 ○●●●●●○○○○○○○○○○
    ○○○○○○○
    herbicides 除草剂 13.31 2000 2008 ●●●●●●●●●○○○○○○○
    ○○○○○○○
    samples 样本 11.13 2000 2005 ●●●●●●○○○○○○○○○○
    ○○○○○○○
    solid phase microextraction 固相微萃取 10.13 2010 2014 ○○○○○○○○○○●●●●●○
    ○○○○○○○
    liquid-liquid microextraction 液-液微萃取 11.69 2006 2017 ○○○○○○○●●●●●●●●●
    ●●○○○○○
    gas chromatography 气相色谱法 10.54 2008 2018 ○○○○○○○○○●●●●●●●
    ●●●○○○○
    chromatography mass spectrometry 色谱质谱法 8.87 2008 2017 ○○○○○○○○○●●●●●●●
    ●●○○○○○
    performance liquid chromatography 高效液相色谱法 7.55 2016 2018 ○○○○○○○○○○○○○○○○
    ●●●○○○○
    risk assessment 风险评估 18.18 2015 2021 ○○○○○○○○○○○○○○○●
    ●●●●●●○
    nanoparticles 纳米材料 11.91 2018 2022 ○○○○○○○○○○○○○○○○
    ○○●●●●●
    removal 去除 18.73 2018 2022 ○○○○○○○○○○○○○○○○
    ○○●●●●●
    waste water 废水 9.07 2018 2022 ○○○○○○○○○○○○○○○○
    ○○●●●●●
    adsorption 吸附 9.78 2021 2022 ○○○○○○○○○○○○○○○○
    ○○○○○●●
    下载: 导出CSV

    表  9  2000—2022年WoS环境领域OPPs的研究热点演化(仅中国)

    Table  9.   Development of research hotspots of OPPs in the environmental field (China only) in WoS from 2000 to 2022

    关键词 突现强度 起始年 终止年 热点演化
    (2000—2022年)
    中文 英文
    gas chromatography 气相色谱法 5.94 2003 2011 ○○○●●●●●●●●●○○○○
    ○○○○○○○
    samples 样本 5.43 2003 2009 ○○○●●●●●●●○○○○○○
    ○○○○○○○
    solid phase microextraction 固相萃取 11.44 2005 2014 ○○○○○●●●●●●●●●●○
    ○○○○○○○
    single drop microextraction 单滴微萃取 10.12 2007 2014 ○○○○○○○●●●●●●●●○
    ○○○○○○○
    chromatography mass spectrometry 色谱质谱法 8.70 2006 2014 ○○○○○○●●●●●●●●●○
    ○○○○○○○
    water samples 水样 6.63 2006 2014 ○○○○○○●●●●●●●●●○
    ○○○○○○○
    environment water samples 环境水样 5.49 2010 2019 ○○○○○○○○○○●●●●●●
    ●●●●○○○
    vegetables 蔬菜 5.89 2014 2018 ○○○○○○○○○○○○○○●●
    ●●●○○○○
    performance 表现 4.84 2016 2018 ○○○○○○○○○○○○○○○○
    ●●●○○○○
    removal 去除 11.47 2015 2022 ○○○○○○○○○○○○○○○●
    ●●●●●●●
    nanoparticles 纳米材料 6.69 2015 2022 ○○○○○○○○○○○○○○○●
    ●●●●●●●
    sensitive detection 感光检测 6.38 2020 2022 ○○○○○○○○○○○○○○○○
    ○○○○●●●
    risk assessment 风险评估 6.40 2015 2022 ○○○○○○○○○○○○○○○●
    ●●●●●●●
    assay 化验 7.36 2020 2022 ○○○○○○○○○○○○○○○○
    ○○○○●●●
    toxicity 毒性 6.68 2021 2022 ○○○○○○○○○○○○○○○○
    ○○○○○●●
    下载: 导出CSV
  • [1] 张春红, 白艳红, 陈杰瑢, 等. 有机磷农药废水降解方法研究新进展[J]. 水处理技术,2010,36(1):1-5.

    ZHANG C H, BAI Y H, CHEN J R, et al. The progress of study on degradation of organophosphorus pesticides in aqueous phase[J]. Technology of Water Treatment,2010,36(1):1-5.
    [2] SIDHU G K, SINGH S, KUMAR V, et al. Toxicity, monitoring and biodegradation of organophosphate pesticides: a review[J]. Critical Reviews in Environmental Science and Technology,2019,49(13):1135-1187.
    [3] MEHTA J, DHAKA R K, DILBAGHI N, et al. Recent advancements in adsorptive removal of organophosphate pesticides from aqueous phase using nanomaterials[J]. Journal of Nanostructure in Chemistry,2024,14(1):53-70.
    [4] POOMAGAL S, SUJATHA R, KUMAR P S, et al. A fuzzy cognitive map approach to predict the hazardous effects of malathion to environment (air, water and soil)[J]. Chemosphere,2021,263:127926.
    [5] 刘洁雪, 梁萧, 覃礼堂, 等. 漓江流域桂林市区段有机磷农药和磺胺类抗生素的复合污染及其生态风险[J]. 环境科学研究,2022,35(1):60-69.

    LIU J X, LIANG X, QIN L T, et al. Combined pollution and ecological risk of organophosphorus pesticides and sulfonamides antibiotics in Guilin section of Lijiang River Basin[J]. Research of Environmental Sciences,2022,35(1):60-69.
    [6] 郝雅琼, 黄泽春, 黄启飞, 等. 甘氨酸法生产草甘膦过程中母液产排节点与治理分析[J]. 环境科学研究,2023,36(6):1210-1217.

    HAO Y Q, HUANG Z C, HUANG Q F, et al. Analysis of nodes and treatment of mother liquor production and discharge in glyphosate production process by glycine method[J]. Research of Environmental Sciences,2023,36(6):1210-1217.
    [7] YAN D Y, JIANG X, XU S H, et al. Quantitative structure-toxicity relationship study of lethal concentration to tadpole (Bufo vulgaris formosus) for organophosphorous pesticides[J]. Chemosphere,2008,71(10):1809-1815.
    [8] OLISAH C, RUBIDGE G, HUMAN L R D, et al. Organophosphate pesticides in South African eutrophic estuaries: spatial distribution, seasonal variation, and ecological risk assessment[J]. Environmental Pollution,2022,306:119446.
    [9] WANG J W, TENG Y G, ZHAI Y Z, et al. Spatiotemporal distribution and risk assessment of organophosphorus pesticides in surface water and groundwater on the North China Plain, China[J]. Environmental Research, 2022, 204(Pt C): 112310.
    [10] AYIVI R D, OBARE S O, WEI J J. Molecularly imprinted polymers as chemosensors for organophosphate pesticide detection and environmental applications[J]. TrAC Trends in Analytical Chemistry,2023,167:117231.
    [11] 车霏霏, 陈俊伊, 王书航, 等. 南湖水系水-沉积物磷时空分布、影响因素及控制对策[J]. 环境工程技术学报,2020,10(6):928-935.

    CHE F F, CHEN J Y, WANG S H, et al. Spatio-temporal distribution, influencing factors and control strategies of phosphorus in water-sediment of Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):928-935.
    [12] ZHAO S M, XU W, ZHANG W L, et al. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides[J]. Bioresource Technology,2021,323:124641.
    [13] 卢艳敏, 张靖天, 张新波, 等. 巢湖沉积物中有机磷的生物可利用性研究[J]. 环境工程技术学报,2020,10(2):197-204. doi: 10.12153/j.issn.1674-991X.20190125

    LU Y M, ZHANG J T, ZHANG X B, et al. Bioavailability of organic phosphorus in Lake Chaohu sediments[J]. Journal of Environmental Engineering Technology,2020,10(2):197-204. doi: 10.12153/j.issn.1674-991X.20190125
    [14] DROUT R J, KATO S, CHEN H Y, et al. Isothermal titration calorimetry to explore the parameter space of organophosphorus agrochemical adsorption in MOFs[J]. Journal of the American Chemical Society,2020,142(28):12357-12366.
    [15] BUSTOS N, CRUZ-ALCALDE A, IRIEL A, et al. Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices[J]. Science of the Total Environment,2019,649:592-600.
    [16] LIU Y D, WU J K, CHENG N, et al. The overlooked role of UV185 induced high-energy excited states in the dephosphorization of organophosphorus pesticide by VUV/persulfate[J]. Chemosphere,2023,334:138993. doi: 10.1016/j.chemosphere.2023.138993
    [17] FARAJZADEH M A, MOGADDAM M R A, AGHDAM S R, et al. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection[J]. Food Chemistry,2016,212:198-204. doi: 10.1016/j.foodchem.2016.05.157
    [18] MONTUORI P, AURINO S, GARZONIO F, et al. Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk[J]. Science of the Total Environment,2016,559:218-231.
    [19] YANG Q T, ZHAO S X, LI H Y, et al. Acidic pH and thiol-driven homogeneous cathodic electrochemiluminescence strategy for determining the residue of organophosphorus pesticide in Chinese cabbage[J]. Food Chemistry,2022,393:133349.
    [20] RAJ A, KUMAR A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation[J]. Environmental Research, 2022, 214(Pt 4): 114011.
    [21] WAN Y Q, LIU J H, PI F W, et al. Advances on removal of organophosphorus pesticides with electrochemical technology[J]. Critical Reviews in Food Science and Nutrition,2023,63(27):8850-8867.
    [22] SUD D, KAUR P. Heterogeneous photocatalytic degradation of selected organophosphate pesticides: a review[J]. Critical Reviews in Environmental Science and Technology,2012,42(22):2365-2407.
    [23] HARLEY K G, ENGEL S M, VEDAR M G, et al. Prenatal exposure to organophosphorous pesticides and fetal growth: pooled results from four longitudinal birth cohort studies[J]. Environmental Health Perspectives,2016,124(7):1084-1092.
    [24] WEE S Y, ARIS A Z. Ecological risk estimation of organophosphorus pesticides in riverine ecosystems[J]. Chemosphere,2017,188:575-581.
    [25] SPARLING D W, FELLERS G. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii[J]. Environmental Pollution,2007,147(3):535-539. doi: 10.1016/j.envpol.2006.10.036
    [26] MAGGIO S A, JENKINS J J. Multi- and trans-generational effects on Daphnia magna of chlorpyrifos exposures[J]. Environmental Toxicology and Chemistry,2022,41(4):1054-1065. doi: 10.1002/etc.5283
    [27] PATHANIA D, SHARMA A, KUMAR S, et al. Bio-synthesized Cu-ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination[J]. Chemosphere,2021,277:130315.
    [28] ECHEVERRI-JARAMILLO G, JARAMILLO-COLORADO B, JUNCA H, et al. Towards the development of microbial ecotoxicology testing using chlorpyrifos contaminated sediments and marine yeast isolates as a model[J]. Microorganisms,2022,10(10):2019.
    [29] FANG X Y, GAN L, WANG L J, et al. Enhanced degradation of bisphenol A by mixed ZIF derived CoZn oxide encapsulated N-doped carbon via peroxymonosulfate activation: the importance of N doping amount[J]. Journal of Hazardous Materials,2021,419:126363.
    [30] PEHKONEN S O, ZHANG Q. The degradation of organophosphorus pesticides in natural waters: a critical review[J]. Critical Reviews in Environmental Science and Technology,2002,32(1):17-72. doi: 10.1080/10643380290813444
    [31] SHABBIR M, SINGH M, MAITI S, et al. Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage[J]. Bioresource Technology,2018,263:280-288. doi: 10.1016/j.biortech.2018.04.122
    [32] MALAKOOTIAN M, SHAHESMAEILI A, FARAJI M, et al. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis[J]. Process Safety and Environmental Protection,2020,134:292-307. doi: 10.1016/j.psep.2019.12.004
    [33] KERMANI M, DOWLATI M, GHOLAMI M, et al. A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in Vegetables[J]. Chemosphere,2021,270:129382. doi: 10.1016/j.chemosphere.2020.129382
    [34] ALFONSO L F, GERMÁN G V, MARÍA del CARMEN P C, et al. Adsorption of organophosphorus pesticides in tropical soils: the case of Karst landscape of northwestern Yucatan[J]. Chemosphere,2017,166:292-299.
    [35] CHEN Z F, ZHANG Y, YANG Y Q, et al. Hierarchical nitrogen-doped holey graphene as sensitive electrochemical sensor for methyl parathion detection[J]. Sensors and Actuators B:Chemical,2021,336:129721. doi: 10.1016/j.snb.2021.129721
    [36] RANA S, KAUR R, JAIN R, et al. Ionic liquid assisted growth of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide based electrode: an improved electro-catalytic performance for the detection of organophosphorus pesticides in beverages[J]. Arabian Journal of Chemistry,2019,12(7):1121-1133. doi: 10.1016/j.arabjc.2018.08.008
    [37] CAO Y, WANG L N, SHEN C, et al. An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination[J]. Sensors and Actuators B: Chemical,2019,283:487-494. doi: 10.1016/j.snb.2018.12.064
    [38] TRIASSI M, NARDONE A, GIOVINETTI M C, et al. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the River of the "Land of Fires" area, southern Italy[J]. Science of the Total Environment,2019,678:741-754. doi: 10.1016/j.scitotenv.2019.04.202
    [39] SUMON K A, RASHID H, PEETERS E T H M, et al. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh[J]. Chemosphere,2018,206:92-100. doi: 10.1016/j.chemosphere.2018.04.167
    [40] CASTORINA R, BRADMAN A, McKONE T E, et al. Cumulative organophosphate pesticide exposure and risk assessment among pregnant women living in an agricultural community: a case study from the CHAMACOS cohort[J]. Environmental Health Perspectives,2003,111(13):1640-1648. doi: 10.1289/ehp.5887
    [41] HUANG X, CUI H W, DUAN W Y. Ecotoxicity of chlorpyrifos to aquatic organisms: a review[J]. Ecotoxicology and Environmental Safety,2020,200:110731. doi: 10.1016/j.ecoenv.2020.110731
    [42] YANG Q T, LI Q, LI H Y, et al. pH-response quantum dots with orange-red emission for monitoring the residue, distribution, and variation of an organophosphorus pesticide in an agricultural crop[J]. Journal of Agricultural and Food Chemistry,2021,69(9):2689-2696. doi: 10.1021/acs.jafc.0c08212
    [43] VELOO K V, IBRAHIM N A S. Analytical extraction methods and sorbents' development for simultaneous determination of organophosphorus pesticides' residues in food and water samples: a review[J]. Molecules,2021,26(18):5495. doi: 10.3390/molecules26185495
    [44] CHEN Q, SUN Y D, LIU S J, et al. Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides[J]. Sensors and Actuators B: Chemical,2021,344:130278. doi: 10.1016/j.snb.2021.130278
    [45] ZHENG W S, SUN Y, GU Y P. Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in situ adsorption of released phosphate[J]. Journal of Hazardous Materials,2022,436:129058. doi: 10.1016/j.jhazmat.2022.129058
    [46] LI W, WU R Q, DUAN J M, et al. Impact of prechlorination on organophosphorus pesticides during drinking water treatment: removal and transformation to toxic oxon byproducts[J]. Water Research,2016,105:1-10. doi: 10.1016/j.watres.2016.08.052
    [47] YAN X, SONG Y, ZHU C Z, et al. MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides[J]. Analytical Chemistry,2018,90(4):2618-2624. doi: 10.1021/acs.analchem.7b04193
    [48] CAI Y, QIU Z Y, LIN X B, et al. Self-assembled nanomaterials based on aggregation-induced emission of AuNCs: fluorescence and colorimetric dual-mode biosensing of organophosphorus pesticides[J]. Sensors and Actuators B: Chemical,2020,321:128481. doi: 10.1016/j.snb.2020.128481
    [49] WANG X L, QIAO X G, MA Y, et al. Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography[J]. Journal of Agricultural and Food Chemistry,2013,61(16):3821-3827. doi: 10.1021/jf400269q
    [50] MA Z H, GAO Y J, CHU F J, et al. Tip-assisted ambient electric arc ionization mass spectrometry for rapid detection of trace organophosphorus pesticides in strawberry[J]. Chinese Chemical Letters,2022,33(9):4411-4414.
    [51] BHANTI M, TANEJA A. Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India[J]. Chemosphere,2007,69(1):63-68. doi: 10.1016/j.chemosphere.2007.04.071
    [52] HUEN K R, BRADMAN A, HARLEY K, et al. Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community[J]. Environmental Research,2012,117:8-16.
    [53] BIDARI A, GANJALI M R, NOROUZI P, et al. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction[J]. Food Chemistry,2011,126(4):1840-1844. doi: 10.1016/j.foodchem.2010.11.142
    [54] DEHGHANI M H, NIASAR Z S, MEHRNIA M R, et al. Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes[J]. Chemical Engineering Journal,2017,310:22-32. doi: 10.1016/j.cej.2016.10.057
    [55] VASSEGHIAN Y, ALMOMANI F, LE V T, et al. Decontamination of toxic Malathion pesticide in aqueous solutions by Fenton-based processes: degradation pathway, toxicity assessment and health risk assessment[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127016. ◇
  • 加载中
图(3) / 表(9)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  103
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19

目录

    /

    返回文章
    返回